947 resultados para Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E)
Resumo:
Previous studies have demonstrated that when we observe somebody else executing an action many areas of our own motor systems are active. It has been argued that these motor activations are evidence that we motorically simulate observed actions; this motoric simulation may support various functions such as imitation and action understanding. However, whether motoric simulation is indeed the function of motor activations during action observation is controversial, due to inconsistency in findings. Previous studies have demonstrated dynamic modulations in motor activity when we execute actions. Therefore, if we do motorically simulate observed actions, our motor systems should also be modulated dynamically, and in a corresponding fashion, during action observation. Using magnetoencephalography (MEG), we recorded the cortical activity of human participants while they observed actions performed by another person. Here, we show that activity in the human motor system is indeed modulated dynamically during action observation. The finding that activity in the motor system is modulated dynamically when observing actions can explain why studies of action observation using functional magnetic resonance imaging (fMRI) have reported conflicting results, and is consistent with the hypothesis that we motorically simulate observed actions.
Resumo:
We present an extensive thermodynamic analysis of a hysteresis experiment performed on a simplified yet Earth-like climate model. We slowly vary the solar constant by 20% around the present value and detect that for a large range of values of the solar constant the realization of snowball or of regular climate conditions depends on the history of the system. Using recent results on the global climate thermodynamics, we show that the two regimes feature radically different properties. The efficiency of the climate machine monotonically increases with decreasing solar constant in present climate conditions, whereas the opposite takes place in snowball conditions. Instead, entropy production is monotonically increasing with the solar constant in both branches of climate conditions, and its value is about four times larger in the warm branch than in the corresponding cold state. Finally, the degree of irreversibility of the system, measured as the fraction of excess entropy production due to irreversible heat transport processes, is much higher in the warm climate conditions, with an explosive growth in the upper range of the considered values of solar constants. Whereas in the cold climate regime a dominating role is played by changes in the meridional albedo contrast, in the warm climate regime changes in the intensity of latent heat fluxes are crucial for determining the observed properties. This substantiates the importance of addressing correctly the variations of the hydrological cycle in a changing climate. An interpretation of the climate transitions at the tipping points based upon macro-scale thermodynamic properties is also proposed. Our results support the adoption of a new generation of diagnostic tools based on the second law of thermodynamics for auditing climate models and outline a set of parametrizations to be used in conceptual and intermediate-complexity models or for the reconstruction of the past climate conditions. Copyright © 2010 Royal Meteorological Society
Resumo:
Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other spaceborne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so one must first calibrate the reflected solar radiation received by the photon-counting detectors of the GLAS 532-nm channel, the primary channel for atmospheric products. Solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (i) calibration with coincident airborne and GLAS observations, (ii) calibration with coincident Geostationary Opera- tional Environmental Satellite (GOES) and GLAS observations of deep convective clouds, and (iii) cali- bration from first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retriev- als is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.
Resumo:
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5°-resolution range from approximately 50% at 1 mm h−1 to 20% at 14 mm h−1. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%–80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5° resolution is relatively small (less than 6% at 5 mm day−1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%–35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%–15% at 5 mm day−1, with proportionate reductions in latent heating sampling errors.
Resumo:
Estimating snow mass at continental scales is difficult but important for understanding landatmosphere interactions, biogeochemical cycles and Northern latitudes’ hydrology. Remote sensing provides the only consistent global observations, but the uncertainty in measurements is poorly understood. Existing techniques for the remote sensing of snow mass are based on the Chang algorithm, which relates the absorption of Earth-emitted microwave radiation by a snow layer to the snow mass within the layer. The absorption also depends on other factors such as the snow grain size and density, which are assumed and fixed within the algorithm. We examine the assumptions, compare them to field measurements made at the NASA Cold Land Processes Experiment (CLPX) Colorado field site in 2002–3, and evaluate the consequences of deviation and variability for snow mass retrieval. The accuracy of the emission model used to devise the algorithm also has an impact on its accuracy, so we test this with the CLPX measurements of snow properties against SSM/I and AMSR-E satellite measurements.
Resumo:
Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (∼10–100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface‐subsurface interactions due to fine‐scale topography and vegetation; improved representation of land‐atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a “grand challenge” to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.
Resumo:
This paper describes advances in ground-based thermodynamic profiling of the lower troposphere through sensor synergy. The well-documented integrated profiling technique (IPT), which uses a microwave profiler, a cloud radar, and a ceilometer to simultaneously retrieve vertical profiles of temperature, humidity, and liquid water content (LWC) of nonprecipitating clouds, is further developed toward an enhanced performance in the boundary layer and lower troposphere. For a more accurate temperature profile, this is accomplished by including an elevation scanning measurement modus of the microwave profiler. Height-dependent RMS accuracies of temperature (humidity) ranging from 0.3 to 0.9 K (0.5–0.8 g m−3) in the boundary layer are derived from retrieval simulations and confirmed experimentally with measurements at distinct heights taken during the 2005 International Lindenberg Campaign for Assessment of Humidity and Cloud Profiling Systems and its Impact on High-Resolution Modeling (LAUNCH) of the German Weather Service. Temperature inversions, especially of the lower boundary layer, are captured in a very satisfactory way by using the elevation scanning mode. To improve the quality of liquid water content measurements in clouds the authors incorporate a sophisticated target classification scheme developed within the European cloud observing network CloudNet. It allows the detailed discrimination between different types of backscatterers detected by cloud radar and ceilometer. Finally, to allow IPT application also to drizzling cases, an LWC profiling method is integrated. This technique classifies the detected hydrometeors into three different size classes using certain thresholds determined by radar reflectivity and/or ceilometer extinction profiles. By inclusion into IPT, the retrieved profiles are made consistent with the measurements of the microwave profiler and an LWC a priori profile. Results of IPT application to 13 days of the LAUNCH campaign are analyzed, and the importance of integrated profiling for model evaluation is underlined.
Resumo:
The Along-Track Scanning Radiometers (ATSRs) provide a long time-series of measurements suitable for the retrieval of cloud properties. This work evaluates the freely-available Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) dataset (version 3) created from the ATSR-2 (1995�2003) and Advanced ATSR (AATSR; 2002 onwards) records. Users are recommended to consider only retrievals flagged as high-quality, where there is a good consistency between the measurements and the retrieved state (corresponding to about 60% of converged retrievals over sea, and more than 80% over land). Cloud properties are found to be generally free of any significant spurious trends relating to satellite zenith angle. Estimates of the random error on retrieved cloud properties are suggested to be generally appropriate for optically-thick clouds, and up to a factor of two too small for optically-thin cases. The correspondence between ATSR-2 and AATSR cloud properties is high, but a relative calibration difference between the sensors of order 5�10% at 660 nm and 870 nm limits the potential of the current version of the dataset for trend analysis. As ATSR-2 is thought to have the better absolute calibration, the discussion focusses on this portion of the record. Cloud-top heights from GRAPE compare well to ground-based data at four sites, particularly for shallow clouds. Clouds forming in boundary-layer inversions are typically around 1 km too high in GRAPE due to poorly-resolved inversions in the modelled temperature profiles used. Global cloud fields are compared to satellite products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements, and a climatology of liquid water content derived from satellite microwave radiometers. In all cases the main reasons for differences are linked to differing sensitivity to, and treatment of, multi-layer cloud systems. The correlation coefficient between GRAPE and the two MODIS products considered is generally high (greater than 0.7 for most cloud properties), except for liquid and ice cloud effective radius, which also show biases between the datasets. For liquid clouds, part of the difference is linked to choice of wavelengths used in the retrieval. Total cloud cover is slightly lower in GRAPE (0.64) than the CALIOP dataset (0.66). GRAPE underestimates liquid cloud water path relative to microwave radiometers by up to 100 g m�2 near the Equator and overestimates by around 50 g m�2 in the storm tracks. Finally, potential future improvements to the algorithm are outlined.
Resumo:
Water vapour modulates energy flows in Earth's climate system through transfer of latent heat by evaporation and condensation and by modifying the flows of radiative energy both in the longwave and shortwave portions of the electromagnetic spectrum. This article summarizes the role of water vapour in Earth's energy flows with particular emphasis on (1) the powerful thermodynamic constraint of the Clausius Clapeyron equation, (2) dynamical controls on humidity above the boundary layer (or free-troposphere), (3) uncertainty in continuum absorption in the relatively transparent "window" regions of the radiative spectrum and (4) implications for changes in the atmospheric hydrological cycle.
Resumo:
Estimating snow mass at continental scales is difficult, but important for understanding land-atmosphere interactions, biogeochemical cycles and the hydrology of the Northern latitudes. Remote sensing provides the only consistent global observations, butwith unknown errors. Wetest the theoretical performance of the Chang algorithm for estimating snow mass from passive microwave measurements using the Helsinki University of Technology (HUT) snow microwave emission model. The algorithm's dependence upon assumptions of fixed and uniform snow density and grainsize is determined, and measurements of these properties made at the Cold Land Processes Experiment (CLPX) Colorado field site in 2002–2003 used to quantify the retrieval errors caused by differences between the algorithm assumptions and measurements. Deviation from the Chang algorithm snow density and grainsize assumptions gives rise to an error of a factor of between two and three in calculating snow mass. The possibility that the algorithm performsmore accurately over large areas than at points is tested by simulating emission from a 25 km diameter area of snow with a distribution of properties derived from the snow pitmeasurements, using the Chang algorithm to calculate mean snow-mass from the simulated emission. The snowmass estimation froma site exhibiting the heterogeneity of the CLPX Colorado site proves onlymarginally different than that from a similarly-simulated homogeneous site. The estimation accuracy predictions are tested using the CLPX field measurements of snow mass, and simultaneous SSM/I and AMSR-E measurements.
Resumo:
High-speed solar wind streams modify the Earth's geomagnetic environment, perturbing the ionosphere, modulating the flux of cosmic rays into the Earth atmosphere, and triggering substorms. Such activity can affect modern technological systems. To investigate the potential for predicting the arrival of such streams at Earth, images taken by the Heliospheric Imager (HI) on the STEREO-A spacecraft have been used to identify the onsets of high-speed solar wind streams from observations of regions of increased plasma concentrations associated with corotating interaction regions, or CIRs. In order to confirm that these transients were indeed associated with CIRs and to study their average properties, arrival times predicted from the HI images were used in a superposed epoch analysis to confirm their identity in near-Earth solar wind data obtained by the Advanced Composition Explorer (ACE) spacecraft and to observe their influence on a number of salient geophysical parameters. The results are almost identical to those of a parallel superposed epoch analysis that used the onset times of the high-speed streams derived from east/west deflections in the ACE measurements of solar wind speed to predict the arrival of such streams at Earth, assuming they corotated with the Sun with a period of 27 days. Repeating the superposed epoch analysis using restricted data sets demonstrates that this technique can provide a timely prediction of the arrival of CIRs at least 1 day ahead of their arrival at Earth and that such advanced warning can be provided from a spacecraft placed 40° ahead of Earth in its orbit.
Resumo:
The World Weather Research Programme (WWRP) and the World Climate Research Programme (WCRP) have identified collaborations and scientific priorities to accelerate advances in analysis and prediction at subseasonal-to-seasonal time scales, which include i) advancing knowledge of mesoscale–planetary-scale interactions and their prediction; ii) developing high-resolution global–regional climate simulations, with advanced representation of physical processes, to improve the predictive skill of subseasonal and seasonal variability of high-impact events, such as seasonal droughts and floods, blocking, and tropical and extratropical cyclones; iii) contributing to the improvement of data assimilation methods for monitoring and predicting used in coupled ocean–atmosphere–land and Earth system models; and iv) developing and transferring diagnostic and prognostic information tailored to socioeconomic decision making. The document puts forward specific underpinning research, linkage, and requirements necessary to achieve the goals of the proposed collaboration.
Resumo:
There have been two kinds of study of ancient beliefs in the earlier prehistory of Scandinavia. One considers the impact of ideas which originated further to the south and east. It considers a cosmology based on the movements of the sun. A second tradition develops out of the ethnography of the circumpolar region and combines archaeological evidence with the beliefs of hunter-gatherers. It postulates the existence of a three-tier cosmology in which people could communicate between different worlds. This paper argues that certain elements that are thought to epitomize the ‘Southern’ system might have been suggested by existing ideas within Scandinavia itself. Both sets of beliefs came to influence one another, but they became increasingly distinct towards the end of the Bronze Age. This paper reconsiders the rock carvings, metalwork and mortuary cairns of that period and the Iron Age in relation to the process of religious change.
Resumo:
The climate of the Earth, like planetary climates in general, is broadly controlled by solar irradiation, planetary albedo and emissivity as well as its rotation rate and distribution of land (with its orography) and oceans. However, the majority of climate fluctuations that affect mankind are internal modes of the general circulation of the atmosphere and the oceans. Some of these modes, such as El Nino-Southern Oscillation (ENSO), are quasi-regular and have some longer-term predictive skill; others like the Arctic and Antarctic Oscillation are chaotic and generally unpredictable beyond a few weeks. Studies using general circulation models indicate that internal processes dominate the regional climate and that some like ENSO events have even distinct global signatures. This is one of the reasons why it is so difficult to separate internal climate processes from external ones caused, for example, by changes in greenhouse gases and solar irradiation. However, the accumulation of the warmest seasons during the latest two decades is lending strong support to the forcing of the greenhouse gases. As models are getting more comprehensive, they show a gradually broader range of internal processes including those on longer time scales, challenging the interpretation of the causes of past and present climate events further.