956 resultados para Adherence steel-concrete
Resumo:
Sliding of alumina (87%) pins against a hardened steel disk over a range of pressures (3.3-30.0 MPa) and speeds (0.1-12.0 ms(-1)) has been studied. Four different regions (R1, R2, R3, and R4) of friction as a function of speed have been identified. R1 and RS exhibit single-valued friction while in R2 and R4 the friction exhibits dual behavior. The speed range over which these regions prevail is sensitive to the pressure. R1 and R2 are low-speed and low-temperature regions, and in both, metal transfer and formation and compaction of gamma-Fe2O3 occur. R3 and R4 are associated with high speeds and high interface temperatures. Formation of FeO, FeAl2O4, and FeAlO3 has been observed. The implications of the tribochemical interactions on friction and wear characteristics are discussed.
Resumo:
Sliding wear characteristics and mechanisms of structural ceramics, namely Al2O3, zirconia-toughened alumina, tetragonal zirconia polycrystals (TZP) and Si3N4 against a steel counterface are influenced by mechanical and tribochemical interactions, specific to the combinations studied. The present paper studies the role of the disc in the sliding wear process of the above ceramics. Experiments were conducted at a pressure of 15.5 MPa between 0.1 and 12.0 m s(-1) with ceramic pins sliding against an EN-24 steel disc. Except in the case of TZP, the disc morphology is sensitive to variations in speed rather than to the pin material. The disc track is (i) mildly abraded at low speeds (about 0.1-0.75 m s(-1)), (ii) severely abraded at intermediate speeds (about 1.0-3.0 m s(-1)), (iii) covered with black patches at high speeds (about 4.0-6.0 m s(-1)) and (iv) completely black at very high speeds (about 7.0-12.0 m s(-1)). In the case of TZP, although black patches appear, transfer of TZP onto the disc surface and high wear of TZP occurs at 4.0 m s(-1). The order of the wear of the disc estimated from profilometric measurements is the same for all the ceramics. Except for Si3N4, the onset of wear of the ceramics is associated with the appearance of deep 'V' grooves on either side of the profile of the disc track. This can be explained on the basis of the thermal and hardness variations. Although other interaction products specific to the ceramic pin are present, the formation of iron oxides dominates the wear of the disc.
Resumo:
The deformation characteristics of stainless steel type AISI 316L under compression in the temperature range 20 to 600 degrees C and strain rate range 0.001 to 100 s(-1) have been studied with a view to characterizing the flow instabilities occurring in the microstructure. At temperatures lower than 100 degrees C and strain rates higher than 0.1 s(-1), 316L stainless steel exhibits flow localization whereas dynamic strain aging (DSA) occurs at intermediate temperatures and below 1 s(-1). To avoid the above flow instabilities, cold working should be carried out at strain rates less than 0.1 s(-1). Warm working of stainless steel type AISI 316L may be done in the temperature and strain rate regime of: 300 to 400 degrees C and 0.001 s(-1) 300 to 450 degrees C and 0.01 s(-1): 450 to 600 degrees C and 0.1 s(-1); 500 degrees C and 1 s(-1) since these regions are free from flow instabilities like DSA and flow localization. The continuum criterion, developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all the above instability features.
Resumo:
Sliding tests were conducted, in air, of YTZP ceramic pins against steel discs at an applied pressure of 15.5 MPa over a speed range of 0.3 to 4.0 ms(-1). Pin wear was not detectable until 2.0 m s(-1), after which a finite but small wear rate was observed at 3.0 m s(-1), accompanied by a red glow at the contacting surface. A transition in wear behaviour and friction (mu) occurred at 4.0 ms(-1), increasing the former by over two orders of magnitude. Both mu and wear behaviour changed with time at 4.0 m s(-1). During initial periods mu was high and wear rate increased steadily with time accompanied by ceramic transfer onto the disc, which increased with time. When disc coverage exceeds a certain threshold value, mu decreased rapidly and the wear rate stabilized at a very high value. Metal transfer was not observed at any speed. High surface temperatures brought about significant adhesion between TZP and steel and this together with enhanced plastic deformation brought about a transition in wear behaviour.
Resumo:
To evaluate the parameters in the two-parameter fracture model, i.e. the critical stress intensity factor and critical crack tip opening displacement for the fracture of plain concrete in Mode 1 for the given test configuration and geometry, considerable computational effort is necessary. A simple graphical method has been proposed using normalized fracture parameters for the three-point bend (3PB) notched specimen and the double-edged notched (DEN) specimen. A similar graphical method is proposed to compute the maximum load carrying capacity of a specimen, using the critical fracture parameters both for 3PB and DEN configurations.
Resumo:
The domain of dynamic recrystallization (DRX) in as-cast 304 stainless steel material occurs at higher temperatures (1250 degrees C) and lower strain rates (0.001 s(-1)) than in wrought 304 stainless steel (1100 degrees C and 0.01 s(-1)). The above result has been explained earlier on the basis of a simple theoretical DRX model involving the rate of nucleation versus rate of grain boundary migration. The present investigation is aimed at examining experimentally the influence of carbide particles on the DRX of ascast 304 using secondary ion mass spectrometric (SIMS) analysis. Isothermal compression tests at a constant true strain rate have been performed on wrought 304 and as-cast 304 materials in the temperature and strain rate ranges of 1000 to 1250 degrees C and 0.001 to 1 s(-1) respectively. The SIMS analysis carried out on the deformed samples revealed that the large carbides present in the as-cast 304 material strongly influence the DRX process. In as-cast 304 material, the presence of large carbide particles in the microstructure shifts the DRX domain to higher temperature and lower strain rate in comparison with wrought 304 material.
Resumo:
A steel ball was slid on aluminium-silicon alloys at different temperatures. After the coefficient of friction had been measured, the surface shear stress was deconvoluted using a two-term model of friction. The ratio of surface shear stress to bulk hardness was calculated as a function of temperature, silicon content and alloying additions. These results are qualitatively similar to those recorded for pre-seizure specimens slid against an En24 disc in a pin-on-disc machine. This similarity, when viewed in the context of the phenomenon of bulk shear, provides a model for seizure of these alloys.
Resumo:
Graded alternate layers of Al2O3 and 8% Y2O3-ZrO2 and their admixtures were plasma sprayed onto bond-coated mild steel. They were evaluated for thermal-shock resistance, thermal-barrier characteristics, hot corrosion resistance (molten NaCl corrodant) and depth of attack, adhesion strength and the presence of phases. Although front-back temperature drops of 423-623 K were observed, some of the coatings showed good adherence even after 100 thermal shack cycles. In the sequence of the graded layers, the oxide which is directly in contact with the bond coat appears to influence the properties especially in coatings of 150 and 300 mu m thickness. Molten NaCl readily attacks the films at high hot-face temperatures (1273 K for 1 h) and the adhesive strength falls significantly by 50-60%. Diffusion of alkaline elements is also found to depend on the chemical composition of the outer coating directly facing the molten corrodant. (C) 1997 Elsevier Science Limited.
Resumo:
The deformation characteristics of as-cast 304 stainless steel under compression in the temperature range 20-600 degrees C and strain rate range 0.001-100 s(-1) have been studied with a view to characterizing the flow instabilities occurring in the microstructure. Ar strain rates of less than 0.05 s(-1), as-cast 304 stainless steel exhibits flow localization in the temperature range 20-600 degrees C, whereas dynamic strain ageing occurs at intermediate temperatures and below 5 s(-1). At room temperatures and strain rates of less than 0.05 s(-1), martensite formation is observed. To avoid the above microstructural instabilities warm working should be carried out at strain rates greater than 10 s(-1) in the temperature range 400-600 degrees C and cold working could be done in the range of about 0.05-0.8 s(-1). The continuum criterion developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all of the above instability features. (C) 1997 Elsevier Science S.A.
Resumo:
This paper presents the details of an experimental study on punching shear strength and behaviour of reinforced concrete corner column connections in flat slabs; a quasi-empirical method is proposed for computing the punching shear strength. The method has also been extended for punching shear strength prediction at interior and edge column connections. The test results compare better with the strengths predicted by the proposed method than those by Ingvarson, Zaglool and Pollet available in the literature. Further, the experimental strengths of interior, edge and corner column connections have been compared with the strengths predicted by the proposed method and the two codes of practice, viz. ACI and BS code, to demonstrate the usefulness of the method.
Resumo:
This paper gives the details of the studies undertaken to examine the strength and behaviour of fibre-reinforced concrete corner column connections in flat slabs. Tests have been conducted on 16 specimens with varying reinforcement ratio, moment/shear ratio (load eccentricity) and volume fraction of fibres. A quasi-empirical method has been proposed for computing the punching shear strength. The method has also been extended to fibre-reinforced concrete interior column connections, tests on which are available in the literature. The test results have been compared with the strength predicted by the proposed method for corner column as well as interior column connections and a satisfactory agreement noticed.
Resumo:
The sliding-wear behavior of Al2O3-SiC-Al composites prepared by melt oxidation against a steel counterface has been recorded in a pin-on-disk machine. At high speeds and pressures (10 m/s, 20 MPa), friction and wear appear to be principally controlled by the in-situ formation of an interfacial film that consists of a layer of Fe3O4. The formation of this him is examined as a function of sliding speed, lubrication, and composite microstructure. A model is proposed in which high surface temperatures cause the preferential extrusion of aluminum from the composite onto the pin/disk interface. This promotes the adhesive pickup of iron and its oxidation to form a stable tribologically beneficial layer of Fe3O4.
Resumo:
Tensile tests in the temperature range 298 to 873 K have been performed on 2.25Cr-1Mo base metal and simulated heat affected zone (HAZ) structures of its weld joint, namely coarse grain bainite, fine grain bainite and intercritical structure. Tensile flow behaviour of all the microstructural conditions could be adequately described by the Hollomon equation (sigma = K-1 epsilon(n1)) at higher (> 623 K) temperatures. Deviation from the Hollomon equation was observed at low strains and lower (< 623 K) temperatures. The Ludwigson modification of Hollomon's equation, sigma = K-1 epsilon(n1) + exp (K-2 + n(2) epsilon), was found to describe the flow curve. In general, the flow parameters n(1), K-1, n(2) and K-2 were found to decrease with increase in temperature except in the intermediate temperature range (423 to 623 K). Peaks/plateaus were observed in their variation with temperature in the intermediate temperature range coinciding with the occurrence of serrated flow in the load-elongation curve. The n(1) Value increased and the K-1 value decreased with the type of microstructure in the order: coarse grain bainite, fine grain bainite, base metal and intercritical structure. The variation of nl with microstructure has been rationalized on the basis of mean free path (MFP) of dislocations which is directly related to the inter-particle spacing. Larger MFP of dislocations lead to higher strain hardening exponents n(1).