920 resultados para Active-reactive optimal power flow
Resumo:
The kinetics of uptake of gaseous N2O5 on submicron aerosols containing NaCl and natural sea salt have been investigated in a flow reactor as a function of relative humidity (RH) in the range 30-80% at 295±2K and a total pressure of 1bar. The measured uptake coefficients, γ, were larger on the aerosols containing sea salt compared to those of pure NaCl, and in both cases increased with increasing RH. These observations are explained in terms of the variation in the size of the salt droplets, which leads to a limitation in the uptake rate into small particles. After correction for this effect the uptake coefficients are independent of relative humidity, and agree with those measured previously on larger droplets. A value of γ=0.025 is recommended for the reactive uptake coefficient for N2O5 on deliquesced sea salt droplets at 298K and RH>40%.
Resumo:
This paper focuses on improving computer network management by the adoption of artificial intelligence techniques. A logical inference system has being devised to enable automated isolation, diagnosis, and even repair of network problems, thus enhancing the reliability, performance, and security of networks. We propose a distributed multi-agent architecture for network management, where a logical reasoner acts as an external managing entity capable of directing, coordinating, and stimulating actions in an active management architecture. The active networks technology represents the lower level layer which makes possible the deployment of code which implement teleo-reactive agents, distributed across the whole network. We adopt the Situation Calculus to define a network model and the Reactive Golog language to implement the logical reasoner. An active network management architecture is used by the reasoner to inject and execute operational tasks in the network. The integrated system collects the advantages coming from logical reasoning and network programmability, and provides a powerful system capable of performing high-level management tasks in order to deal with network fault.
Resumo:
This paper considers methods for testing for superiority or non-inferiority in active-control trials with binary data, when the relative treatment effect is expressed as an odds ratio. Three asymptotic tests for the log-odds ratio based on the unconditional binary likelihood are presented, namely the likelihood ratio, Wald and score tests. All three tests can be implemented straightforwardly in standard statistical software packages, as can the corresponding confidence intervals. Simulations indicate that the three alternatives are similar in terms of the Type I error, with values close to the nominal level. However, when the non-inferiority margin becomes large, the score test slightly exceeds the nominal level. In general, the highest power is obtained from the score test, although all three tests are similar and the observed differences in power are not of practical importance. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
New Mo(II) diimine derivatives of [Mo(q (3)allyl)X(CO)(2)(CH3CN)(2)] (allyl = C3H5 and C5H5O; X = Cl, Br) were prepared, and [MO(eta(3)-C3H5)Cl(CO)(2)(BIAN)] (BIAN = 1,4-(4-chloro)phenyl-2,3-naphthalene-diazabutadiene) (7) was structurally characterized by single-crystal X-ray diffraction. This complex adopted an equatorial-axial arrangement of the bidentate ligand (axial isomer), in contrast with the precursors, found as the equatorial isomer in the solid and fluxional in solution. The new complexes of the type [Mo(eta(3)-allyl)X(CO)(2)(N-N)l (N-N is a bidentate chelating dinitrogen ligand) were tested for the catalytic epoxidation of cyclooctene using tert-butyl hydroperoxide as oxidant. All catalytic systems were 100% selective toward epoxide formation. While their turnover frequencies paralleled those of related Mo(eta) carbonyl compounds or Mo(VI) compounds bearing similar N-donor ligands, they exhibited similar olefin conversions in consecutive catalytic runs. The acetonitrile precursors were generally more active than the diimine complexes, and the chloro derivatives more active than the bromo ones. Combined vibrational and NMR spectroscopy and computational studies (DFT) were used to investigate the nature of the molybdenum species formed in the catalytic system with [Mo(eta(3)-C3H5)Cl(CO)(2){1,4-(2,6-dimethyl)phenyl-2.3-dimethyldiazabuta diene}] (4) and to propose that the resulting species may be dimeric bearing oxide bridges.
Resumo:
We report the first systematic study on the photocatalytic oxidation of humic acid (HA) in artificial seawater (ASW). TiO2 (Degussa P25) dispersions were used as the catalyst with irradiation from a medium-pressure mercury lamp. The optimum quantity of catalyst was found to be between 2 and 2.5 g l(-1); whiled the decomposition was fastest at low pH values (pH 4.5 in the range examined), and the optimum air-flow, using an immersion well reactor with a capacity of 400 ml, was 850 ml min(-1). Reactivity increased with air-flow up to this figure, above which foaming prevented operation of the reactor. Using pure. oxygen, an optimal flow rate was observed at 300 nil min(-1), above which reactivity remains essentially constant. Following treatment for 1 h, low-salinity water (2700 mg l(-1)) was completely mineralised, whereas ASW (46000 mg l(-1)) had traces of HA remaining. These effects are interpreted and kinetic data presented. To avoid problems of precipitation due to change of ionic strength humic substances were prepared directly in ASW, and the effects of ASW on catalyst suspension and precipitation have been taken into account. The Langmuir-Hinshelwood kinetic model has been shown to be followed only approximately for the catalytic oxidation of HA in ASW. The activation energy for the reaction derived from an Arrhenius treatment was 17 ( +/-0.6) kJ mol(-1). (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Electrochemical and spectroelectrochemical techniques were employed to study in detail the formation and so far unreported spectroscopic properties of soluble electroactive molecular chains with nonbridged metal-metal backbones, namely, [{Ru-0(CO)(PrCN)(bpy)}(m)](n) (m = 0, -1) and [{Ru-0(CO)(bpy)Cl}(m)](n) (m = -1, -2; bpy = 2,2'-bipyridine). The precursors cis-(Cl)-[Ru-II(CO)(MeCN)(bpy)Cl-2] (in PrCN) and mer-[Ru-II(CO)(bpy)Cl-3](-) (in tetrahydrofuran (THF) and PrCN) undergo one-electron reductions to reactive radicals [Ru-II(CO)(MeCN)(bpy(center dot-))Cl-2](-) and [Ru-II(CO)(bpy(center dot-))Cl-3](2-), respectively. Both [bpy(center dot-)]-containing species readily electropolymerize on concomitant dissociation of two chloride ligands and consumption of a second electron. Along this path, mer-to-fac isomerization of the bpy-reduced trichlorido complex (supported by density functional theory calculations) and a concentration-dependent oligomerization process contribute to the complex reactivity pattern. In situ spectroelectrochemistry (IR, UV/vis a has revealed that the charged polymer [{Ru-0(CO)(bpy)Cl}(-)](n) is stable in THF, but in PrCN it converts readily to [Ru-0(CO)(PrCN)(bpy)](n). An excess of chloride ions retards this substitution at low temperatures. Both polymetallic chains are completely soluble in the electrolyte solution and can be reduced reversibly to the corresponding [bpy(center dot-)]-containing species.
Resumo:
The structural and reactive properties of the acetyl-protected "one-legged" manganese porphyrin [SAc]P-Mn(III)Cl on Ag(100) have been studied by NEXAFS, synchrotron XPS and STM Spontaneous surface-mediated deprotection occurs at 300 K accompanied by spreading of the resulting thio-tethered porphyrin across the metal surface Loss of the axial chlorine ligand occurs at 498 K, without any demetalation of the macrocycle, leaving the Mn center in a low co-ordination state At low coverages the macrocycle is markedly tilted toward the silver surface, as is the phenyl group that forms part of the tethering "leg". In the monolayer region a striking transition occurs whereby the molecule rolls over, preserving the tilt angle of the phenyl group, strongly increasing that of the macrocycle, decreasing the apparent height of the molecule and decreasing its footprint, thus enabling closer packing These findings are in marked contrast with those previously reported for the corresponding more rigidly bound four-legged porphyrin [Turner, M., Vaughan, O. P. H., Kyriakou, G., Watson, D. J., Scherer, L. J; Davidson, G J. E, Sanders, J. K. M.; Lambert, R. M J. Am. Chem Soc 2009, 131, 1910] suggesting that the physicochemical :)properties and potential applications of these versatile systems should be strongly dependent on the mode of tethering to the surface.
Resumo:
The mechanism of active stress generation in tension wood is still not fully understood. To characterize the functional interdependency between the G-layer and the secondary cell wall, nanostructural characterization and mechanical tests were performed on native tension wood tissues of poplar (Populus nigra x Populus deltoids) and on tissues in which the G-layer was removed by an enzymatic treatment. In addition to the well-known axial orientation of the cellulose fibrils in the G-layer, it was shown that the microfibril angle of the S2-layer was very large (about 36 degrees). The removal of the G-layer resulted in an axial extension and a tangential contraction of the tissues. The tensile stress-strain curves of native tension wood slices showed a jagged appearance after yield that could not be seen in the enzyme-treated samples. The behaviour of the native tissue was modelled by assuming that cells deform elastically up to a critical strain at which the G-layer slips, causing a drop in stress. The results suggest that tensile stresses in poplar are generated in the living plant by a lateral swelling of the G-layer which forces the surrounding secondary cell wall to contract in the axial direction.
Resumo:
A finite element numerical study has been carried out on the isothermal flow of power law fluids in lid-driven cavities with axial throughflow. The effects of the tangential flow Reynolds number (Re-U), axial flow Reynolds number (Re-W), cavity aspect ratio and shear thinning property of the fluids on tangential and axial velocity distributions and the frictional pressure drop are studied. Where comparison is possible, very good agreement is found between current numerical results and published asymptotic and numerical results. For shear thinning materials in long thin cavities in the tangential flow dominated flow regime, the numerical results show that the frictional pressure drop lies between two extreme conditions, namely the results for duct flow and analytical results from lubrication theory. For shear thinning materials in a lid-driven cavity, the interaction between the tangential flow and axial flow is very complex because the flow is dependent on the flow Reynolds numbers and the ratio of the average axial velocity and the lid velocity. For both Newtonian and shear thinning fluids, the axial velocity peak is shifted and the frictional pressure drop is increased with increasing tangential flow Reynolds number. The results are highly relevant to industrial devices such as screw extruders and scraped surface heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The contribution of retinal flow (RF), extraretinal (ER), and egocentric visual direction (VD) information in locomotor control was explored. First, the recovery of heading from RF was examined when ER information was manipulated; results confirmed that ER signals affect heading judgments. Then the task was translated to steering curved paths, and the availability and veracity of VD were manipulated with either degraded or systematically biased RE Large steering errors resulted from selective manipulation of RF and VD, providing strong evidence for the combination of RF, ER, and VD. The relative weighting applied to RF and VD was estimated. A point-attractor model is proposed that combines redundant sources of information for robust locomotor control with flexible trajectory planning through active gaze.
Resumo:
When a computer program requires legitimate access to confidential data, the question arises whether such a program may illegally reveal sensitive information. This paper proposes a policy model to specify what information flow is permitted in a computational system. The security definition, which is based on a general notion of information lattices, allows various representations of information to be used in the enforcement of secure information flow in deterministic or nondeterministic systems. A flexible semantics-based analysis technique is presented, which uses the input-output relational model induced by an attacker's observational power, to compute the information released by the computational system. An illustrative attacker model demonstrates the use of the technique to develop a termination-sensitive analysis. The technique allows the development of various information flow analyses, parametrised by the attacker's observational power, which can be used to enforce what declassification policies.
Resumo:
In rapid scan Fourier transform spectrometry, we show that the noise in the wavelet coefficients resulting from the filter bank decomposition of the complex insertion loss function is linearly related to the noise power in the sample interferogram by a noise amplification factor. By maximizing an objective function composed of the power of the wavelet coefficients divided by the noise amplification factor, optimal feature extraction in the wavelet domain is performed. The performance of a classifier based on the output of a filter bank is shown to be considerably better than that of an Euclidean distance classifier in the original spectral domain. An optimization procedure results in a further improvement of the wavelet classifier. The procedure is suitable for enhancing the contrast or classifying spectra acquired by either continuous wave or THz transient spectrometers as well as for increasing the dynamic range of THz imaging systems. (C) 2003 Optical Society of America.
Resumo:
The authors discuss an implementation of an object oriented (OO) fault simulator and its use within an adaptive fault diagnostic system. The simulator models the flow of faults around a power network, reporting switchgear indications and protection messages that would be expected in a real fault scenario. The simulator has been used to train an adaptive fault diagnostic system; results and implications are discussed.
A wind-tunnel study of flow distortion at a meteorological sensor on top of the BT Tower, London, UK
Resumo:
High quality wind measurements in cities are needed for numerous applications including wind engineering. Such data-sets are rare and measurement platforms may not be optimal for meteorological observations. Two years' wind data were collected on the BT Tower, London, UK, showing an upward deflection on average for all wind directions. Wind tunnel simulations were performed to investigate flow distortion around two scale models of the Tower. Using a 1:160 scale model it was shown that the Tower causes a small deflection (ca. 0.5°) compared to the lattice on top on which the instruments were placed (ca. 0–4°). These deflections may have been underestimated due to wind tunnel blockage. Using a 1:40 model, the observed flow pattern was consistent with streamwise vortex pairs shed from the upstream lattice edge. Correction factors were derived for different wind directions and reduced deflection in the full-scale data-set by <3°. Instrumental tilt caused a sinusoidal variation in deflection of ca. 2°. The residual deflection (ca. 3°) was attributed to the Tower itself. Correction of the wind-speeds was small (average 1%) therefore it was deduced that flow distortion does not significantly affect the measured wind-speeds and the wind climate statistics are reliable.
Resumo:
This study proposes a utility-based framework for the determination of optimal hedge ratios (OHRs) that can allow for the impact of higher moments on hedging decisions. We examine the entire hyperbolic absolute risk aversion family of utilities which include quadratic, logarithmic, power, and exponential utility functions. We find that for both moderate and large spot (commodity) exposures, the performance of out-of-sample hedges constructed allowing for nonzero higher moments is better than the performance of the simpler OLS hedge ratio. The picture is, however, not uniform throughout our seven spot commodities as there is one instance (cotton) for which the modeling of higher moments decreases welfare out-of-sample relative to the simpler OLS. We support our empirical findings by a theoretical analysis of optimal hedging decisions and we uncover a novel link between OHRs and the minimax hedge ratio, that is the ratio which minimizes the largest loss of the hedged position. © 2011 Wiley Periodicals, Inc. Jrl Fut Mark