858 resultados para Acrylamide films


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(p-phenylene vinylene) (PPV) derivatives are well known for their applications in polymer light emitting diodes (PLEDs). PPV derivatives are highly susceptible to photo-oxidation though, which is mainly caused by the scission of the vinyl double bond on the polymer backbone. In this work, we show that Langmuir-Blodgett (LB) films are less degraded than cast films of a PPV derivative (OC1OC6-PPV). Both films had similar thickness (similar to 50 nm) to allow for a more realistic comparison. Degradation was monitored with UV-vis and FTIR spectroscopies. The results indicated that cast films were completely degraded in ca. 400 min, while LB took longer time, i.e. about four times the values for the cast films. The differences can be attributed to the more compact morphology in the LB than in the cast films. With a compact morphology the diffusion of oxygen in the LB film is hampered and this causes a delay in the degradation process. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The layer-by-layer technique was exploited to immobilize the enzyme uricase onto indium tin oxide substrates coated with a layer of Prussian Blue. Uricase layers were alternated with either poly(ethylene imine) or poly(diallyidimethylammoniumchloride), and the resulting films were used as amperometric biosensors for uric acid. Biosensors with optimum perfomance had a limit of detection of 0.15 mu A mu mol 1(-1) cm(-2) with a linear response between 0.1 and 0.6 mu M of uric acid, which is sufficient for use in clinical tests. Bioactivity was preserved for weeks, and there was negligible influence from interferents, as detection was carried out at 0.0 V vs saturated calomel electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodium phthalocyanine (RhPc) was synthesized and ultra thin Langmuir-Blodgett (LB) films of RhPc were successfully fabricated. The LB film characterization was carried out using both UV-vis absorption spectra and Raman scattering. The Raman spectroscopy was carried out using 633 and 780 nm laser lines. LB films were deposited onto Ag nanoparticles to achieve the surface-enhanced pre-resonance Raman scattering (pre-SERRS) and surface-enhanced Raman scattering (SERS) for both laser lines, respectively, which allowed the characterization of the RhPc ultra thin films. The morphology of the LB RhPc neat film is extracted from micro-Raman imaging. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A PPV derivative, poly(2-methoxy,5-(n-octadecyl)-p-phenylenevinylene) (OC1OC18-PPV), has been synthesized via the Gilch route and used to fabricate Langmuir and Langmuir-Blodgett (LB) films. True monomolecular films were formed at the air/water interface, which were successfully transferred onto different types of substrate. Using UV-visible absorption, FTIR, fluorescence and Raman scattering spectroscopies we observed that the polymer molecules were randomly distributed in the LB film, with no detectable anisotropy. This is in contrast to the anisotropic LB films of a previously reported PPV derivative, poly(2-methoxy-5-n-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV), which is surprising because the longer chain of OC1OC18-PPV investigated here was expected to lead to more ordered films. As a consequence of the lack of order, LB films of OC1OC18-PPV exhibit lower photoconductivity and require higher operating voltage in a polymer light-emitting diode (PLED) in comparison with LB films of OC1OC6-PPV. This result confirms the importance of molecular organization in the LB film to obtain efficient PLEDs. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer light-emitting devices (PLEDs) have been produced with Langmuir-Blodgett (LB) films from poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer and an ionomer of a copolymer of styrene and methylmethacrylate (PS/PMMA) as an electron-injection layer. The main features of such devices are the low operating voltages, obtainable firstly due to the good quality of the ultrathin LB films that allows PLEDs to be produced reproducibly and secondly due to the improved electrical and luminance properties brought by the electron-injection layer. Also demonstrated is the superior performance of an all-LB device compared to another one produced with cast films of the same materials. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of a poly(azo)urethane by fixing CO2 in bis-epoxide followed by a polymerization reaction with an azodiamine is presented. Since isocyanate is not used in the process, it is termed clean method and the polymers obtained are named NIPUs (non-isocyanate polyurethanes). Langmuir films were formed at the air-water interface and were characterized by surface pressure vs mean molecular area per met unit (Pi-A) isotherms. The Langmuir monolayers were further studied by running stability tests and cycles of compression/expansion (possible hysteresis) and by varying the compression speed of the monolayer formation, the subphase temperature, and the solvents used to prepare the spreading polymer solutions. The Langmuir-Blodgett (LB) technique was used to fabricate ultrathin films of a particular polymer (PAzoU). It is possible to grow homogeneous LB films of up to 15 layers as monitored using UV-vis absorption spectroscopy. Higher number of layers can be deposited when PAzoU is mixed with stearic acid, producing mixed LB films. Fourier transform infrared (FTIR) absorption spectroscopy and Raman scattering showed that the materials do not interact chemically in the mixed LB films. The atomic force microscopy (AFM) and micro-Raman technique (optical microscopy coupled to Raman spectrograph) revealed that mixed LB films present a phase separation distinguishable at micrometer or nanometer scale. Finally, mixed and neat LB films were successfully characterized using impedance spectroscopy at different temperatures, a property that may lead to future application as temperature sensors. Principal component analysis (PCA) was used to correlate the data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical sensors made from nanostructured films of poly(o-ethoxyaniline) POEA and poly(sodium 4-styrene sulfonate) PSS are produced and used to detect and distinguish 4 chemicals in solution at 20 mM, including sucrose, NaCl, HCl, and caffeine. These substances are used in order to mimic the 4 basic tastes recognized by humans, namely sweet, salty, sour, and bitter, respectively. The sensors are produced by the deposition of POEA/PSS films at the top of interdigitated microelectrodes via the layer-by-layer technique, using POEA solutions containing different dopant acids. Besides the different characteristics of the POEA/PSS films investigated by UV-Vis and Raman spectroscopies, and by atomic force microscopy.. it is observed that their electrical response to the different chemicals in liquid media is very fast, in the order of seconds, systematical, reproducible, and extremely dependent on the type of acid used for film fabrication. The responses of the as-prepared sensors are reproducible and repetitive after many cycles of operation. Furthermore, the use of an "electronic tongue" composed by an array of these sensors and principal component analysis as pattern recognition tool allows one to reasonably distinguish test solutions according to their chemical composition. (c) 2007 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the formation of Langmuir films of 5,10,15,20-tetra(4-pyridyl) 21H,23H-porphine,hereafter named tetrapyridyl porphyrins with distinct central ions (2H(+), Zn(2+), Cu(2+), Ni(2+)). The films were characterized with surface pressure and surface potential isotherms and in situ UV-vis absorbance. The measurements indicated strong aggregation of porphyrin monomers at the air-water interface, with a red shift of the Soret band in comparison with the spectrum obtained from CHCl(3) solutions. The shift was larger for the non-substituted H(2)TPyP, and depended on the metal ion. Significantly, aggregation occurred right after spreading of the Langmuir film, with on further shifts in the UV-vis spectra upon compression of the film, or even after transferring them onto solid substrates in the form of Langmuir-Blodgett (LB) films. The buildup of LB films from H(2)TPyP and ZnTPyP was monitored with UV-vis spectroscopy, indicating an equal amount of material deposited in each deposition step. Using FTIR in the transmission and reflection modes, we inferred that the H(2)TPyP molecules exhibit no preferential orientation in the LB films, while for ZnTPyP there is preferential orientation, with the porphyrin molecules anchored to the substrate by the lateral pyridyl groups. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control of molecular architectures has been a key factor for the use of Langmuir-Blodgett (LB) films in biosensors, especially because biomolecules can be immobilized with preserved activity. In this paper we investigated the incorporation of tyrosinase (Tyr) in mixed Langmuir films of arachidic acid (AA) and a lutetium bisphthalocyanine (LuPc2), which is confirmed by a large expansion in the surface pressure isotherm. These mixed films of AA-LuPc2 + Tyr could be transferred onto ITO and Pt electrodes as indicated by FTIR and electrochemical measurements, and there was no need for crosslinking of the enzyme molecules to preserve their activity. Significantly, the activity of the immobilised Tyr was considerably higher than in previous work in the literature, which allowed Tyr-containing LB films to be used as highly sensitive voltammetric sensors to detect pyrogallol. Linear responses have been found up to 400 mu M, with a detection limit of 4.87 x 10(-2) mu M (n = 4) and a sensitivity of 1.54 mu A mu M-1 cm(-2). In addition, the Hill coefficient (h = 1.27) indicates cooperation with LuPc2 that also acts as a catalyst. The enhanced performance of the LB-based biosensor resulted therefore from a preserved activity of Tyr combined with the catalytic activity of LuPc2, in a strategy that can be extended to other enzymes and analytes upon varying the LB film architecture.