847 resultados para Acid Oil
Resumo:
Chloromethylfurfural (CMF), a valuable intermediate for the production of chemicals and fuel, can be derived in high yields from the cellulose component of biomass. This study examined the effect of sugar cane bagasse components and biomass architecture on CMF/bio-oil yield using a HCl/dichloroethane biphasic system. The type of pretreatment affected bio-oil yield, as the CMF yield increased with increasing glucan content. CMF yield reached 81.9% with bagasse pretreated by acidified aqueous ionic liquid, which had a glucan content of 81.6%. The lignin content of the biomass was found to significantly reduce CMF yield, which was only 62.3% with acid-catalysed steam exploded sample having a lignin content of 29.6%. The change of CMF yield may be associated with fibre surface changes as a result of pretreatment. The hemicellulose content also impacted negatively on CMF yield. Storage of the bio-oil in chlorinated solvents prevented CMF degradation.
Resumo:
Reverse osmosis is the dominant technology utilized for desalination of saline water produced during the extraction of coal seam gas. Alternatively, ion exchange is of interest due to potential cost advantages. However, there is limited information regarding the column performance of strong acid cation resin for removal of sodium ions from both model and actual coal seam water samples. In particular, the impact of bed depth, flow rate, and regeneration was not clear. Consequently, this study applied Bed Depth Service Time (BDST) models to reveal that increasing sodium ion concentration and flow rates diminished the time required for breakthrough to occur. The loading of sodium ions on fresh resin was calculated to be ca. 71.1 g Na/kg resin. Difficulties in regeneration of the resin using hydrochloric acid solutions were discovered, with 86% recovery of exchange sites observed. The maximum concentration of sodium ions in the regenerant brine was found to be 47,400 mg/L under the conditions employed. The volume of regenerant waste formed was 6.2% of the total volume of water treated. A coal seam water sample was found to load the resin with only 53.5 g Na/kg resin, which was consistent with not only the co-presence of more favoured ions such as calcium, magnesium, barium and strontium, but also inefficient regeneration of the resin prior to the coal seam water test.
Resumo:
Various metal salts (Na, K, Rb, and NH4) of monochloro acetic acid were prepared and the Cl-35 nuclear quadrupole resonance frequencies were measured at room temperature. A comparative study of nuclear quadrupole resonance frequencies of monochloro acetic acid and its metal salts is carried out. The frequency shifts obtained in the respective metal chloroacetates are used to estimate the changes in the ionicity of C-Cl bond. Further, the changes in the ionicity of C-Cl bond were used to estimate the percentage of intra-molecular charge transfer between respective cation-anion of the metal salts of chloro acetic acid. The nuclear quadrupole resonance frequency is found to decrease with increasing ionicity of the alkali metal ion.
Resumo:
The lead-acid battery is often the weakest link in photovoltaic (PV) installations. Accordingly, various versions of lead-acid batteries, namely flooded, gelled, absorbent glass-mat and hybrid, have been assembled and performance tested for a PV stand-alone lighting system. The study suggests the hybrid VRLA batteries, which exhibit both the high power density of absorbent glass-mat design and the improved thermal properties of the gel design, to be appropriate for such an application. Among the VRLA-type batteries studied here water loss for the hybrid VRLA batteries is minimal and charge-acceptance during the service at high temperatures is better in relation to their AGM counterparts.
Resumo:
Shikimic acid, more commonly known by its anionic form, shikimate, is an important intermediate compound of the ‘shikimate pathway’ in plants and microorganisms1. It is the principal precursor for the synthesis of aromatic amino acids, phenylalanine, tryptophan and tyrosine and other compounds such as alkaloids, phenolics and phenyl propanoids2. It is used extensively as a chiral building block for the synthesis of a number of compounds in both pharmaceutical and cosmetic industries3. In the recent past, the focus on shikimic acid has increased since it is the key precursor for the synthesis of Tamiflu, the only drug against avian flu caused by the H5N1 virus4,5. Shikimic acid is converted to a diethyl ketal intermediate, which is then reduced in two steps to an epoxide that is finally transformed to Tamiflu6.
Resumo:
Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis. However, the molecular machinery that mediates its function is not yet fully understood. Therefore, structural studies were carried out on the acyl-ACP intermediates of Plasmodium falciparum using NMR as a spectroscopic probe. Chemical shift perturbation studies put forth a new picture of the interaction of ACP molecule with the acyl chain, namely, the hydrophobic core can protect up to 12 carbon units, and additional carbons protrude out from the top of the hydrophobic cavity. The latter hypothesis stems from chemical shift changes observed in C-alpha and C-beta of Ser-37 in tetradecanoyl-ACP. C-13, N-15-Double-filtered nuclear Overhauser effect (NOE) spectroscopy experiments further substantiate the concept; in octanoyl (C-8)- and dodecanoyl (C-12)-ACP, a long range NOE is observed within the phosphopantetheine arm, suggesting an arch-like conformation. This NOE is nearly invisible in tetradecanoyl (C-14)-ACP, indicating a change in conformation of the prosthetic group. Furthermore, the present study provides insights into the molecular mechanism of ACP expansion, as revealed from a unique side chain-to-backbone hydrogen bond between two fairly conserved residues, Ile-55 HN and Glu-48 O. The backbone amide of Ile-55 HN reports a pK(a) value for the carboxylate, similar to 1.9 pH units higher than model compound value, suggesting strong electrostatic repulsion between helix II and helix III. Charge-charge repulsion between the helices in combination with thrust from inside due to acyl chain would energetically favor the separation of the two helices. Helix III has fewer structural restraints and, hence, undergoes major conformational change without altering the overall-fold of P. falciparum ACP.
Resumo:
he crystal structure of 12 peptides containing the conformationally constrained 1-(aminomethyl)cyclohexaneacetic acid, gabapentin (Gpn), are reported. In all the 39 Gpn residues conformationally characterized so far, the torsion angles about the C-alpha-C-beta and C-beta-C-gamma bonds are restricted to the gauche conformation (+/- 60 degrees). The Gpn residue is constrained to adopt folded conformations resulting in the formation of intramolecularly hydrogen-bonded structures even in short peptides. The peptides Boc-Ac(6)c-Gpn-OMe 1 and Boc-Gpn-Aib-Gpn-Aib-OMe 2 provide examples of C-7 conformation; peptides Boc-Gpn-Aib-OH 3, Boc-Ac(6)c-Gpn-OH 4, Boc-Val-Pro-Gpn-OH 5, Piv-Pro-Gpn-Val-OMe 6, and Boc-Gpn-Gpn-Leu-OMe 7 provide examples of C-9 conformation; peptide Boc-Ala-Aib-Gpn-Aib-Ala-OMe 8 provides an example of C-12 conformation and peptides Boc-beta Leu-Gpn-Val-OMe 9 and Boc-beta Phe-Gpn-Phe-OMe 10 provide examples of C-13 conformation. Gpn peptides provide examples of backbone expanded mimetics for canonical alpha-peptide turns like the gamma (C-7) and the beta (C-10) turns. The hybrid beta gamma sequences provide an example of a mimetic of the C-13 alpha-turn formed by three contiguous alpha-amino acid residues. Two examples of folded tripeptide structures, Boc-Gpn-beta Phe-Leu-OMe 11 and Boc-Aib-Gpn-beta Phg-NHMe 12, lacking internal hydrogen bonds are also presented. An analysis of available Gpn residue conformations provides the basis for future design of folded hybrid peptides.
Resumo:
Understanding the key factors that influence the interaction preferences of amino acids in the folding of proteins have remained a challenge. Here we present a knowledge-based approach for determining the effective interactions between amino acids based on amino acid type, their secondary structure, and the contact based environment that they find themselves in the native state structure as measured by their number of neighbors. We find that the optimal information is approximately encoded in a 60 x 60 matrix describing the 20 types of amino acids in three distinct secondary structures (helix, beta strand, and loop). We carry out a clustering scheme to understand the similarity between these interactions and to elucidate a nonredundant set. We demonstrate that the inferred energy parameters can be used for assessing the fit of a given sequence into a putative native state structure.
Resumo:
With an objective to replace a water droplet from a steel surface by oil we study here the impact of injecting a hydrophilic/lipophilic surfactant into the droplet or into the surrounding oil reservoir. Contact angle goniometery, Grazing angle FTIR spectroscopy and Atomic force microscopy are used to record the oil/water interfacial tension, surface energetics of the substrate under the oil and water phases as well as the corresponding physical states of the substrates. Such energetics reflect the rate at which the excess surfactant molecules accumulate at the water/oil interface and desorb into the phases. The molecules diffuse into the substrate from the phases and build up specific molecular configurations which, with the interfacial tension, control the non-equilibrium progress of and the equilibrium status of the contact line. The study shows that the most efficient replacement of water by the surrounding oil happens when a surfactant is sparingly soluble in the supplier oil phase and highly soluble in the recipient water phase.
Resumo:
Lysophosphatidic acid (LPA) acts as a signaling molecule that regulates diverse cellular processes and it can rapidly be metabolized by phosphatase and acyltransferase LPA phosphatase gene has not been identified and characterized in plants so far The BLAST search revealed that the At3g03520 is similar to phospholipase family. and distantly related to bacterial phosphatases The conserved motif. (J)4XXXNXSFD, was identified in both At3g03520 like phospholipases and acid phosphatases In silico expression analysis of At3g03520 revealed a high expression during phosphate starvation and abiotic stresses. This gene was overexpressed in Escherichia coli and shown to posses LPA specific phosphatase activity These results Suggest that this gene possibly plays a role in signal transduction and storage lipid synthesis.
Resumo:
Three-dimensional achiral coordination polymers of the general formula M2(D, l-NHCH (COO)CH2COO)2·C4H4N2 where M = Ni and Co and pyrazine acts as the linker molecule have been prepared under hydrothermal conditions starting with [M(L-NHCH(COO)CH2COO)·3H2O] possessing a helical chain structure. A three-dimensional hybrid compound of the formula Pb2.5[N{CH(COO) CH2COO}22H2O] has also been prepared hydrothermally starting with aspartic acid and Pb(NO3)2. In this lead compound, where a secondary amine formed by the dimerisation of aspartic acid acts as the ligand, there is two-dimensional inorganic connectivity and one-dimensional organic connectivity.
Resumo:
Acyl carrier protein (ACIP) plays a central role in many metabolic processes inside the cell, and almost 4% of the total enzymes inside the cell require it as a cofactor. Here, we report self-acylation properties in ACPs from Plasmodium falciparum and Brassica napus that are essential components of type II fatty acid biosynthesis (FAS II), disproving the existing notion that this phenomenon is restricted only to ACPs involved in polyketide biosynthesis. We also provide strong evidence to suggest that catalytic self-acylation is intrinsic to the individual ACP. Mutational analysis of these ACPs revealed the key residue(s) involved in this phenomenon. We also demonstrate that these FAS 11 ACPs exhibit a high degree of selectivity for self-acylation employing only dicarboxylic acids as substrates. A plausible mechanism for the self-acylation reaction is also proposed.
Resumo:
This paper reports the observation of a reversible disassembly process for a previously reported octanuclear Cu(II) complex with imidazole. To identify the factors responsible for the process, five Cu(II) complexes of different nuclearity with different amino acid-derived tetradentate ligands were structurally characterized. The results show that the coordination geometry preference of Cu(II), the tendency of imidazole to act as in-plane ligand, and H-bonding played important role in the formation and disassembly of the octanuclear complex. A general scheme describing the effect of different amino acid side arms, solvents, and exogenous ligands on the nuclearity of the Cu(II) complexes has been presented. The crystals of the complexes also showed formation of multifaceted networks in the resulting complexes.
Resumo:
A series of novel fluoroaminophosphates 4a-4j were synthesized by one-pot method in presence of tetramethylguanidine (TMG) as a catalyst and were characterized by elemental analysis, FTIR, H-1, C-13, P-31, F-19 NMR, and mass spectra. All the title compounds were evaluated forin vitro cytotoxicity against leukemic cell line derived from T-cells of leukemia patient (CEM cells) by Trypan blue exclusion and MTT assays, and these were found to exert concentration dependent cytotoxic effects. Among them 4f, 4g & 4j possessed marked cytotoxicity. 4g (with IC50 value of 6 mu M) had emerged as lead compound.