790 resultados para ARTIFICIAL NEURAL NETWORK
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
As redes neurais artificiais têm provado serem uma poderosa técnica na resolução de uma grande variedade de problemas de otimização. Nesta dissertação é desenvolvida uma nova rede neural, tipo recorrente, sem realimentação (self-feedback loops) e sem neurônios ocultos, para o processamento do sinal sísmico, para fornecer a posição temporal, a polaridade e as amplitudes estimadas dos refletores sísmicos, representadas pelos seus coeficientes de reflexão. A principal característica dessa nova rede neural consiste no tipo de função de ativação utilizada, a qual permite três possíveis estados para o neurônio. Busca-se estimar a posição dos refletores sísmicos e reproduzir as verdadeiras polaridades desses refletores. A idéia básica desse novo tipo de rede, aqui denominada rede neural discreta (RND), é relacionar uma função objeto, que descreve o problema geofísico, com a função de Liapunov, que descreve a dinâmica da rede neural. Deste modo, a dinâmica da rede leva a uma minimização local da sua função de Liapunov e consequentemente leva a uma minimização da função objeto. Assim, com uma codificação conveniente do sinal de saída da rede tem-se uma solução do problema geofísico. A avaliação operacional da arquitetura desta rede neural artificial é realizada em dados sintéticos gerados através do modelo convolucional simples e da teoria do raio. A razão é para explicar o comportamento da rede com dados contaminados por ruído, e diante de pulsos fonte de fases mínima, máxima e misturada.
Resumo:
Duas das mais importantes atividades da interpretação de perfis para avaliação de reservatórios de hidrocarbonetos são o zoneamento do perfil (log zonation) e o cálculo da porosidade efetiva das rochas atravessadas pelo poço. O zoneamento é a interpretação visual do perfil para identificação das camadas reservatório e, consequentemente, dos seus limites verticais, ou seja, é a separação formal do perfil em rochas reservatório e rochas selante. Todo procedimento de zoneamento é realizado de forma manual, valendo-se do conhecimento geológico-geofísico e da experiência do intérprete, na avaliação visual dos padrões (características da curva do perfil representativa de um evento geológico) correspondentes a cada tipo litológico específico. O cálculo da porosidade efetiva combina tanto uma atividade visual, na identificação dos pontos representativos de uma particular rocha reservatório no perfil, como a escolha adequada da equação petrofísica que relaciona as propriedades físicas mensuradas da rocha com sua porosidade. A partir do conhecimento da porosidade, será estabelecido o volume eventualmente ocupado por hidrocarboneto. Esta atividade, essencial para a qualificação de reservatórios, requer muito do conhecimento e da experiência do intérprete de perfil para a efetiva avaliação da porosidade efetiva, ou seja, a porosidade da rocha reservatório, isenta do efeito da argila sobre a medida das propriedades físicas da mesma. Uma forma eficiente de automatizar estes procedimentos e auxiliar o geofísico de poço nestas atividades, que particularmente demandam grande dispêndio de tempo, é apresentado nesta dissertação, na forma de um novo perfil, derivado dos perfis tradicionais de porosidade, que apresenta diretamente o zoneamento. Pode-se destacar neste novo perfil as profundidades do topo e da base das rochas reservatório e das rochas selante, escalonado na forma de porosidade efetiva, denominado perfil de porosidade efetiva zoneado. A obtenção do perfil de porosidade efetiva zoneado é baseado no projeto e execução de várias arquiteturas de rede neural artificial, do tipo direta, com treinamento não supervisionado e contendo uma camada de neurônios artificiais, do tipo competitivo. Estas arquiteturas são projetadas de modo a simular o comportamento do intérprete de perfil, quando da utilização do gráfico densidade-neutrônico, para as situações de aplicabilidade do modelo arenito-folhelho. A aplicabilidade e limitações desta metodologia são avaliadas diretamente sobre dados reais, oriundos da bacia do Lago Maracaibo (Venezuela).
Resumo:
Pós-graduação em Biociências - FCLAS
Resumo:
The grinding operation gives workpieces their final finish, minimizing surface roughness through the interaction between the abrasive grains of a tool (grinding wheel) and the workpiece. However, excessive grinding wheel wear due to friction renders the tool unsuitable for further use, thus requiring the dressing operation to remove and/or sharpen the cutting edges of the worn grains to render them reusable. The purpose of this study was to monitor the dressing operation using the acoustic emission (AE) signal and statistics derived from this signal, classifying the grinding wheel as sharp or dull by means of artificial neural networks. An aluminum oxide wheel installed on a surface grinding machine, a signal acquisition system, and a single-point dresser were used in the experiments. Tests were performed varying overlap ratios and dressing depths. The root mean square values and two additional statistics were calculated based on the raw AE data. A multilayer perceptron neural network was used with the Levenberg-Marquardt learning algorithm, whose inputs were the aforementioned statistics. The results indicate that this method was successful in classifying the conditions of the grinding wheel in the dressing process, identifying the tool as "sharp''(with cutting capacity) or "dull''(with loss of cutting capacity), thus reducing the time and cost of the operation and minimizing excessive removal of abrasive material from the grinding wheel.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Traditional supervised data classification considers only physical features (e. g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.
Resumo:
Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.
Resumo:
Hierarchical multi-label classification is a complex classification task where the classes involved in the problem are hierarchically structured and each example may simultaneously belong to more than one class in each hierarchical level. In this paper, we extend our previous works, where we investigated a new local-based classification method that incrementally trains a multi-layer perceptron for each level of the classification hierarchy. Predictions made by a neural network in a given level are used as inputs to the neural network responsible for the prediction in the next level. We compare the proposed method with one state-of-the-art decision-tree induction method and two decision-tree induction methods, using several hierarchical multi-label classification datasets. We perform a thorough experimental analysis, showing that our method obtains competitive results to a robust global method regarding both precision and recall evaluation measures.
Resumo:
In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.
Resumo:
Dendritic computation is a term that has been in neuro physiological research for a long time [1]. It is still controversial and far for been clarified within the concepts of both computation and neurophysiology [2], [3]. In any case, it hasnot been integrated neither in a formal computational scheme or structure, nor into formulations of artificial neural nets. Our objective here is to formulate a type of distributed computation that resembles dendritic trees, in such a way that it shows the advantages of neural network distributed computation, mostly the reliability that is shown under the existence of holes (scotomas) in the computing net, without ?blind spots?.
Resumo:
Self-consciousness implies not only self or group recognition, but also real knowledge of one’s own identity. Self-consciousness is only possible if an individual is intelligent enough to formulate an abstract self-representation. Moreover, it necessarily entails the capability of referencing and using this elf-representation in connection with other cognitive features, such as inference, and the anticipation of the consequences of both one’s own and other individuals’ acts. In this paper, a cognitive architecture for self-consciousness is proposed. This cognitive architecture includes several modules: abstraction, self-representation, other individuals'representation, decision and action modules. It includes a learning process of self-representation by direct (self-experience based) and observational learning (based on the observation of other individuals). For model implementation a new approach is taken using Modular Artificial Neural Networks (MANN). For model testing, a virtual environment has been implemented. This virtual environment can be described as a holonic system or holarchy, meaning that it is composed of autonomous entities that behave both as a whole and as part of a greater whole. The system is composed of a certain number of holons interacting. These holons are equipped with cognitive features, such as sensory perception, and a simplified model of personality and self-representation. We explain holons’ cognitive architecture that enables dynamic self-representation. We analyse the effect of holon interaction, focusing on the evolution of the holon’s abstract self-representation. Finally, the results are explained and analysed and conclusions drawn.
Resumo:
Social behaviour is mainly based on swarm colonies, in which each individual shares its knowledge about the environment with other individuals to get optimal solutions. Such co-operative model differs from competitive models in the way that individuals die and are born by combining information of alive ones. This paper presents the particle swarm optimization with differential evolution algorithm in order to train a neural network instead the classic back propagation algorithm. The performance of a neural network for particular problems is critically dependant on the choice of the processing elements, the net architecture and the learning algorithm. This work is focused in the development of methods for the evolutionary design of artificial neural networks. This paper focuses in optimizing the topology and structure of connectivity for these networks.
Resumo:
Objective The main purpose of this research is the novel use of artificial metaplasticity on multilayer perceptron (AMMLP) as a data mining tool for prediction the outcome of patients with acquired brain injury (ABI) after cognitive rehabilitation. The final goal aims at increasing knowledge in the field of rehabilitation theory based on cognitive affectation. Methods and materials The data set used in this study contains records belonging to 123 ABI patients with moderate to severe cognitive affectation (according to Glasgow Coma Scale) that underwent rehabilitation at Institut Guttmann Neurorehabilitation Hospital (IG) using the tele-rehabilitation platform PREVIRNEC©. The variables included in the analysis comprise the neuropsychological initial evaluation of the patient (cognitive affectation profile), the results of the rehabilitation tasks performed by the patient in PREVIRNEC© and the outcome of the patient after a 3–5 months treatment. To achieve the treatment outcome prediction, we apply and compare three different data mining techniques: the AMMLP model, a backpropagation neural network (BPNN) and a C4.5 decision tree. Results The prediction performance of the models was measured by ten-fold cross validation and several architectures were tested. The results obtained by the AMMLP model are clearly superior, with an average predictive performance of 91.56%. BPNN and C4.5 models have a prediction average accuracy of 80.18% and 89.91% respectively. The best single AMMLP model provided a specificity of 92.38%, a sensitivity of 91.76% and a prediction accuracy of 92.07%. Conclusions The proposed prediction model presented in this study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients. The ability to predict treatment outcomes may provide new insights toward improving effectiveness and creating personalized therapeutic interventions based on clinical evidence.