941 resultados para ANGIOSPERM PHYLOGENY
Resumo:
Cladobotryum dendroides (= Dactylium dendroides) has hitherto been regarded as the major causal agent of cobweb disease of the cultivated mushroom, Agaricus bisporus. Nucleotide sequence data for the internal transcribed spacer (ITS) regions of four Cladobotryum/Hypomyces species reported to be associated with cobweb disease, however, indicate that the most common pathogen is now C. mycophilum. This cobweb pathogen varies somewhat in conidial septation from published descriptions of C. mycophilum and lacks the distinctive colony odor. ITS sequencing revealed minor nucleotide variation which split isolates of the pathogen into three subgroups, two comprising isolates that were sensitive to methylbenzimidazole carbamate (MBC) fungicides and one comprising MBC-resistant isolates. The MBC-resistant isolates, which were only obtained from Ireland and Great Britain, clustered together strongly in randomly amplified polymorphic DNA (RAPD) PCR analysis, suggesting that they may be clonal. The MBC-sensitive isolates were more diverse. A RAPD fragment of 800 to 900 bp, containing a microsatellite and found in the MBC-resistant isolates, also indicated their clonal nature; the microsatellites of these isolates contained the same number of GA repeats. Smaller, polymorphic microsatellites, similarly comprising GA repeats, in the MBC-sensitive isolates in general correlated with their geographic origin.
Resumo:
Identification of Rhizoctonia solani, R. oryzae and R. oryzae-sativae, components of the rice sheath disease complex, is extremely difficult and often inaccurate and as a result may hinder the success of extensive breeding programmes throughout Asia. In this study, primers designed from unique regions within the rDNA internal transcribed spacers have been used to develop a rapid PCR-based diagnostic test to provide an accurate identification of the species on rice. Tests on the specificity of the primers concerned showed that they provide the means for accurate identification of the Rhizoctonia species responsible for sheath diseases in rice.
Resumo:
A recent report showed significant associations between several SNPs in a previously unknown EST cluster with schizophrenia. (1). The cluster was identified as the human dystrobrevin binding protein 1 gene (DTNBP1) by sequence database comparisons and homology with mouse DTNBP1. (2). However, the linkage disequilibrium (LD) among the SNPs in DTNBP1 as well as the pattern of significant SNP-schizophrenia association was complex. This raised several questions such as the number of susceptibility alleles that may be involved and the size of the region where the actual disease mutation(s) could be located. To address these questions, we performed different single-marker tests on the 12 previously studied and 2 new SNPs in DTNBP1 that were re-scored using an improved procedure, and performed a variety of haplotype analyses. The sample consisted of 268 Irish multiplex families selected for high density of schizophrenia. Results suggested a simple structure where the LD in the target region could be explained by 6 haplotypes that together accounted for 96% of haplotype diversity in the whole sample. From these six, a single high-risk haplotype was identified that showed a significant association with schizophrenia and explained the pattern of significant findings in the analyses with individual markers. This haplotype was 30 kb long, had a large effect, could be measured with two tag SNPs only, had a frequency of 6% in our sample, seemed to be of relatively recent origin in evolutionary terms, and was equally distributed over Ireland. Implications of these findings for follow-up and replication studies are discussed.
Resumo:
The anaerobic skin commensal Propionibacterium acnes is an underestimated cause of human infections and clinical conditions. Previous studies have suggested a role for the bacterium in lumbar disc herniation and infection. To further investigate this, five biopsy samples were surgically excised from each of 64 patients with lumbar disc herniation. P. acnes and other bacteria were detected by anaerobic culture, followed by biochemical and PCR-based identification. In total, 24/64 (38%) patients had evidence of P. acnes in their excised herniated disc tissue. Using recA and mAb typing methods, 52% of the isolates were type II (50% of culture-positive patients), while type IA strains accounted for 28% of isolates (42% patients). Type III (11% isolates; 21% patients) and type IB strains (9% isolates; 17% patients) were detected less frequently. The MIC values for all isolates were lowest for amoxicillin, ciprofloxacin, erythromycin, rifampicin, tetracycline, and vancomycin (≤1 mg/L). The MIC for fusidic acid was 1-2 mg/L. The MIC for trimethoprim and gentamicin was 2 to ≥4 mg/L. The demonstration that type II and III strains, which are not frequently recovered from skin, predominated within our isolate collection (63%) suggests that the role of P. acnes in lumbar disc herniation should not be readily dismissed.
Resumo:
Summary
1.While plant–fungal interactions are important determinants of plant community assembly and ecosystem functioning, the processes underlying fungal community composition are poorly understood.
2.Here, we studied for the first time the root-associated eumycotan communities in a set of co-occurring plant species of varying relatedness in a species-rich, semi-arid grassland in Germany. The study system provides an opportunity to evaluate the importance of host plants and gradients in soil type and landscape structure as drivers of fungal community structure on a relevant spatial scale. We used 454 pyrosequencing of the fungal internal transcribed spacer region to analyse root-associated eumycotan communities of 25 species within the Asteraceae, which were sampled at different locations within a soil type gradient. We partitioned the variance accounted for by three predictors (host plant phylogeny, spatial distribution and soil type) to quantify their relative roles in determining fungal community composition and used null model analyses to determine whether community composition was influenced by biotic interactions among the fungi.
3.We found a high fungal diversity (156 816 sequences clustered in 1100 operational taxonomic units (OTUs)). Most OTUs belonged to the phylum Ascomycota (35.8%); the most abundant phylotype best-matched Phialophora mustea. Basidiomycota were represented by 18.3%, with Sebacina as most abundant genus. The three predictors explained 30% of variation in the community structure of root-associated fungi, with host plant phylogeny being the most important variance component. Null model analysis suggested that many fungal taxa co-occurred less often than expected by chance, which demonstrates spatial segregation and indicates that negative interactions may prevail in the assembly of fungal communities.
4.Synthesis. The results show that the phylogenetic relationship of host plants is the most important predictor of root-associated fungal community assembly, indicating that fungal colonization of host plants might be facilitated by certain plant traits that may be shared among closely related plant species.
Resumo:
Pseudomonas aeruginosa is an opportunistic pathogen and an important cause of infection, particularly amongst cystic fibrosis (CF) patients. While specific strains capable of patient-to-patient transmission are known, many infections appear to be caused by unique and unrelated strains. There is a need to understand the relationship between strains capable of colonising the CF lung and the broader set of P. aeruginosa isolates found in natural environments. Here we report the results of a multilocus sequence typing (MLST)-based study designed to understand the genetic diversity and population structure of an extensive regional sample of P. aeruginosa isolates from South East Queensland, Australia. The analysis is based on 501 P. aeruginosa isolates obtained from environmental, animal and human (CF and non-CF) sources with particular emphasis on isolates from the Lower Brisbane River and isolates from CF patients obtained from the same geographical region. Overall, MLST identified 274 different sequence types, of which 53 were shared between one or more ecological settings. Our analysis revealed a limited association between genotype and environment and evidence of frequent recombination. We also found that genetic diversity of P. aeruginosa in Queensland, Australia was indistinguishable from that of the global P. aeruginosa population. Several CF strains were encountered frequently in multiple ecological settings; however, the most frequently encountered CF strains were confined to CF patients. Overall, our data confirm a non-clonal epidemic structure and indicate that most CF strains are a random sample of the broader P. aeruginosa population. The increased abundance of some CF strains in different geographical regions is a likely product of chance colonisation events followed by adaptation to the CF lung and horizontal transmission among patients.
Resumo:
The opportunistic human pathogen Propionibacterium acnes is comprised of a number of distinct phylogroups, designated types IA1, IA2, IB, IC, II and III, that vary in their production of putative virulence factors, inflammatory potential, as well as biochemical, aggregative and morphological characteristics. Although Multilocus Sequence Typing (MLST) currently represents the gold standard for unambiguous phylogroup classification, and individual strain identification, it is a labour and time-consuming technique. As a consequence, we have developed a multiplex touchdown PCR assay that will, in a single reaction, confirm species identity and phylogeny of an isolate based on its pattern of reaction with six primer sets that target the 16S rRNA (all isolates), ATPase (type IA1, IA2, IC), sodA (type IA2, IB), atpD (type II) and recA (type III) housekeeping genes, as well as a Fic family toxin gene (type IC). When applied to 312 P. acnes isolates previously characterised by MLST, and representing type IA1 (n=145), IA2 (n=20), IB (n=65), IC (n=7), II (n=45) and III (n=30), the multiplex displayed 100% sensitivity and 100% specificity for the detection of isolates within each targeted phylogroup. No cross-reactivity with isolates from other bacterial species was observed. The multiplex assay will provide researchers with a rapid, high-throughput and technically undemanding typing method for epidemiological and phylogenetic investigations. It will facilitate studies investigating the association of lineages with various infections and clinical conditions, as well as a pre-screening tool to maximise the number of genetically diverse isolates selected for downstream, higher resolution sequence-based analyses.
Resumo:
1. In addition to abiotic determinants, biotic factors, including competitive, interspecific interactions, limit species’ distributions. Environmental changes in human disturbance, land use and climate are predicted to have widespread impacts on interactions between species, especially in the order Lagomorpha due to the higher latitudes and more extreme environmental conditions they occupy.
2. We reviewed the published literature on interspecific interactions in the order Lagomorpha, and compared the biogeography, macroecology, phylogeny and traits of species known to interact with those of species with no reported interactions, to investigate how projected future environmental change may affect interactions and potentially alter species’ distributions.
3. Thirty-three lagomorph species have competitive interactions reported in the literature; the majority involve hares (Lepus sp.) or the eastern cottontail rabbit (Sylvilagus floridanus). Key regions for interactions are located between 30-50°N of the Equator, and include eastern Asia (southern Russia on the border of Mongolia) and North America (north western USA).
4. Closely related, large-bodied, similarly sized species occurring in regions of human-modified, typically agricultural landscapes, or at high elevations are significantly more likely to have reported competitive interactions than other lagomorph species.
5. We identify species’ traits associated with competitive interactions, and highlight some potential impacts that future environmental change may have on interspecific interactions. Our approach using bibliometric and biological data is widely applicable, and with relatively straightforward methodologies, can provide insights into interactions between species.
6. Our results have implications for predicting species’ responses to global change, and we advise that capturing, parameterizing and incorporating interspecific interactions into analyses (for example, species distribution modelling) may be more important than suggested by the literature.
Resumo:
A quarter of all lagomorphs (pikas, rabbits, hares and jackrabbits) are threatened with extinction, including several genera that contain only one species. The number of species in a genus correlates with extinction risk in lagomorphs, but not in other mammal groups, and this is concerning because the non-random extinction of small clades disproportionately threatens genetic diversity and phylogenetic history. Here, we use phylogenetic analyses to explore the properties of the lagomorph phylogeny and test if variation in evolution, biogeography and ecology between taxa explains current patterns of diversity and extinction risk. Threat status was not related to body size (and, by inference, its biological correlates), and there was no phylogenetic signal in extinction risk. We show that the lagomorph phylogeny has a similar clade-size distribution to other mammals, and found that genus size was unrelated to present climate, topography, or geographic range size. Extinction risk was greater in areas of higher human population density and negatively correlated with anthropogenically modified habitat. Consistent with this, habitat generalists were less likely to be threatened. Our models did not predict threat status accurately for taxa that experience region-specific threats. We suggest that pressure from human populations is so severe and widespread that it overrides ecological, biological, and geographic variation in extant lagomorphs.
How subtle are the biases that shape the fidelity of the fossil record? A test using marine molluscs
Resumo:
Biases in preservation shape the fossil record, and therefore impact on our reconstructions of past environments and biodiversity. Given the intensive recent research in the general fields of taphonomy and exceptional preservation, surprisingly, fundamental questions remain unanswered about species-level variation in skeletal preservation potential at low taxonomic levels (e.g. between genera from the same family, or between taxa from related families) across myriad groups with multi-element skeletons. Polyplacophoran molluscs (chitons sensu lato) are known from the late Cambrian to Recent, and possess a distinctive articulated scleritome consisting of eight overlapping calcareous valves. The apparent uniformity of living chitons presents an ideal model to test the potential for taphonomic biases at the alpha-taxon level. The vast majority of fossil chitons are preserved as single valves; few exhibit body preservation or even an articulated shell series. An experimental taphonomic programme was conducted using the Recent polyplacophorans Lepidochitona cinerea and Tonicella marmorea (suborder Chitonina) and Acanthochitona crinita (Acanthochitonina). Experiments in a rock tumbler on disarticulated valves found differential resistance to abrasion between taxa; in one experiment 53.8-61.5% of Lepidochitona valves were recovered but 92% of those from Tonicella and 100% of elements from Acanthochitona. Chiton valves and even partly decayed carcasses are more resistant to transportation than their limited fossil record implies. Different species of living chitons have distinctly different preservation potential. This, problematically, does not correlate with obvious differences in gross valve morphology; some, but not all, of the differences correlate with phylogeny. Decay alone is sufficient to exacerbate differences in preservation potential of multi-element skeletons; some, but not all, of the variation that results is due to specimen size and the fidelity of the fossil record will thus vary intra-specifically (e.g. between ontogenetic stages) as well as inter-specifically.
Resumo:
Introduction: Chitons (Polyplacophora) are molluscs considered to have a simple nervous system without cephalisation. The position of the class within Mollusca is the topic of extensive debate and neuroanatomical characters can provide new sources of phylogenetic data as well as insights into the fundamental biology of the organisms. We report a new discrete anterior sensory structure in chitons, occurring throughout Lepidopleurida, the order of living chitons that retains plesiomorphic characteristics.
Results: The novel "Schwabe organ" is clearly visible on living animals as a pair of streaks of brown or purplish pigment on the roof of the pallial cavity, lateral to or partly covered by the mouth lappets. We describe the histology and ultrastructure of the anterior nervous system, including the Schwabe organ, in two lepidopleuran chitons using light and electron microscopy. The oesophageal nerve ring is greatly enlarged and displays ganglionic structure, with the neuropil surrounded by neural somata. The Schwabe organ is innervated by the lateral nerve cord, and dense bundles of nerve fibres running through the Schwabe organ epithelium are frequently surrounded by the pigment granules which characterise the organ. Basal cells projecting to the epithelial surface and cells bearing a large number of ciliary structures may be indicative of sensory function. The Schwabe organ is present in all genera within Lepidopleurida (and absent throughout Chitonida) and represents a novel anatomical synapomorphy of the clade.
Conclusions: The Schwabe organ is a pigmented sensory organ, found on the ventral surface of deep-sea and shallow water chitons; although its anatomy is well understood, its function remains unknown. The anterior commissure of the chiton oesophagial nerve ring can be considered a brain. Our thorough review of the chiton central nervous system, and particularly the sensory organs of the pallial cavity, provides a context to interpret neuroanatomical homology and assess this new sense organ.
Resumo:
Mollusks are the most morphologically disparate living animal phylum, they have diversified into all habitats, and have a deep fossil record. Monophyly and identity of their eight living classes is undisputed, but relationships between these groups and patterns of their early radiation have remained elusive. Arguments about traditional morphological phylogeny focus on a small number of topological concepts but often without regard to proximity of the individual classes. In contrast, molecular studies have proposed a number of radically different, inherently contradictory, and controversial sister relationships. Here, we assembled a dataset of 42 unique published trees describing molluscan interrelationships. We used these data to ask several questions about the state of resolution of molluscan phylogeny compared to a null model of the variation possible in random trees constructed from a monophyletic assemblage of eight terminals. Although 27 different unique trees have been proposed from morphological inference, the majority of these are not statistically different from each other. Within the available molecular topologies, only four studies to date have included the deep-sea class Monoplacophora; but 36.4% of all trees are not significantly different. We also present supertrees derived from 2 data partitions and 3 methods, including all available molecular molluscan phylogenies, which will form the basis for future hypothesis testing. The supertrees presented here were not constructed to provide yet another hypothesis of molluscan relationships, but rather to algorithmically evaluate the relationships present in the disparate published topologies. Based on the totality of available evidence, certain patterns of relatedness among constituent taxa become clear. The internodal distance is consistently short between a few taxon pairs, particularly supporting the relatedness of Monoplacophora and the chitons, Polyplacophora. Other taxon pairs are rarely or never found in close proximity, such as the vermiform Caudofoveata and Bivalvia. Our results have specific utility for guiding constructive research planning in order to better test relationships in Mollusca as well as other problematic groups. Taxa with consistently proximate relationships should be the focus of a combined approach in a concerted assessment of potential genetic and anatomical homology, while unequivocally distant taxa will make the most constructive choices for exemplar selection in higher-level phylogenomic analyses.
Resumo:
Bacteriovorax marinus SJ is a predatory delta-proteobacterium isolated from a marine environment. The genome sequence of this strain provides an interesting contrast to that of the terrestrial predatory bacterium Bdellovibrio bacteriovorus HD100. Based on their predatory lifestyle, Bacteriovorax were originally designated as members of the genus Bdellovibrio but subsequently were re-assigned to a new genus and family based on genetic and phenotypic differences. B. marinus attaches to gram-negative bacteria, penetrates through the cell wall to form a bdelloplast, in which it replicates, as shown using microscopy. Bacteriovorax is distinct, as it shares only 30% of its gene products with its closest sequenced relatives. Remarkably, 34% of predicted genes over 500 nt in length were completely unique with no significant matches in the databases. As expected, Bacteriovorax shares several characteristic loci with the other delta-proteobacteria. A geneset shared between Bacteriovorax and Bdellovibrio that is not conserved among other delta-proteobacteria such as Myxobacteria (which destroy prey bacteria externally via lysis), or the non-predatory Desulfo-bacteria and Geobacter species was identified. These 291 gene orthologues common to both Bacteriovorax and Bdellovibrio may be the key indicators of host-interaction predatory-specific processes required for prey entry. The locus from Bdellovibrio bacteriovorus is implicated in the switch from predatory to prey/host-independent growth. Although the locus is conserved in B. marinus, the sequence has only limited similarity. The results of this study advance understanding of both the similarities and differences between Bdellovibrio and Bacteriovorax and confirm the distant relationship between the two and their separation into different families.
Resumo:
Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers.
Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals.
Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk.
Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.