980 resultados para 770804 Control of pests and exotic species
Resumo:
v.1:no.15(1899)
Resumo:
v.7:no.10(1910)
Resumo:
v.3:no.15(1904)
Resumo:
n.s. no.39(1998)
Resumo:
Differences in the phoresy of the mites Macrocheles muscaedomesticae (Scopoli, 1972) (Macrochelidae) and Uroseius sp. (Polyaspidae) on the house fly, Musca domestica (Linnaeus, 1758) and the similarities in their phoretic dispersal and parasitism are discussed, altogether with the effects on predator-prey interactions. The prevalence and intensity of phoresy in the mite species were significantly related to the attachment site on the hosts. The phoresy of Uroseius sp. was correlated with temperature but not with rainfall and relative humidity. Selective pressure in the environment resulted in displacement and the emergence of local and regional populations. These results suggest that in each habitat the populations will use different resources and will show several relationships with other species, as well as a selection for morphological and behavioral types.
Resumo:
n.s. no.111(2006)
Resumo:
ABSTRACT Amphibians are the most threatened vertebrate group according to the IUCN. Land-use and land cover change (LULCC) and climate change (CC) are two of the main factors related to declining amphibian populations. Given the vulnerability of threatened and rare species, the study of their response to these impacts is a conservation priority. The aim of this work was to analyze the combined impact of LULCC and CC on the regionally endemic species Melanophryniscus sanmartini Klappenbach, 1968. This species is currently categorized as near threatened by the IUCN, and previous studies suggest negative effects of projected changes in climate. Using maximum entropy methods we modeled the effects of CC on the current and mid-century distribution of M. sanmartini under two IPCC scenarios - A2 (severe) and B2 (moderate). The effects of LULCC were studied by superimposing the potential distribution with current land use, while future distribution models were evaluated under the scenario of maximum expansion of soybean and afforestation in Uruguay. The results suggest that M. sanmartini is distributed in eastern Uruguay and the south of Brazil, mainly related to hilly and grasslands systems. Currently more than 10% of this species' distribution is superimposed by agricultural crops and exotic forest plantations. Contrasting with a recent modelling study our models suggest an expansion of the distribution of M. sanmartini by mid-century under both climate scenarios. However, despite the rise in climatically suitable areas for the species in the future, LULCC projections indicate that the proportion of modified habitats will occupy up to 25% of the distribution of M. sanmartini. Future change in climate conditions could represent an opportunity for M. sanmartini, but management measures are needed to mitigate the effects of habitat modification in order to ensure its survival and allow the eventual expansion of its distribution.
Resumo:
ABSTRACT In order to solve the affinities of the species of Isotes Weise, 1922, a detailed morphological comparative study was carried out based on type-species of Isotes and its junior synonym,Synbrotica Bechyné, 1956. Isotes tetraspilota (Baly, 1865) and Isotes borrei (Baly, 1889) had their morphology of mouthparts, endosternites, wings and both male and female genitalia compared by the first time. A new synonymy is established between Isotes borrei (Baly, 1889) and Isotes crucigera (Weise, 1916) syn. nov. based on external and genitalia morphology. New structures for Section Diabroticites Chapuis, 1875 are presented and discussed.
Resumo:
A study on the ecology of phlebotomine sandfly fauna in a restricted focus of cutaneous leishmaniasis in northern Venezuela was undertaken in order to investigate the species responsible for the transmission. The study area and catching methods for phlebotomine sandflies are described. A total of 9,061 females and 1,662 males were collected during a year-term study. 12 species of Lutzomya and 1 species of Brumptomya sp. were identified. Absolute and relative abundance and ocurrence for each species were determined. The rel ative occurrence allowed to distinguish the common species, viz. L. panamensis, L. ovallesi, L. gomezi, L. tinidadensis, L. atroclavata, L. cayennensis, L. shannoni and L. olmeca bicolor from the rare species vis., L. punctigeniculata, L. rangeliana, L. evansi and L. dubitans. General comments on the species composition of the sandfly fauna in this locality are made.
Resumo:
The taxonomic status of three Amazonian simuliid species, Simulium guianese Wise, S. oyapockense Floch & Abonnenc and S. yarzabali Ramirez Perez is reviewed. Simulium cuasisanguineum Ramirez Perez, Yarzabal & Peterson is synonymized with S. oyapockense, and S. yarzabali is revalidated from its synonymy with S. incrustatum Lutz. The role of these three species in the transmission of human onchocerciasis and mansonelliasis in Amazonia is reviewed.
Resumo:
Human MRE11 is a key enzyme in DNA double-strand break repair and genome stability. Human MRE11 bears a glycine-arginine-rich (GAR) motif that is conserved among multicellular eukaryotic species. We investigated how this motif influences MRE11 function. Human MRE11 alone or a complex of MRE11, RAD50, and NBS1 (MRN) was methylated in insect cells, suggesting that this modification is conserved during evolution. We demonstrate that PRMT1 interacts with MRE11 but not with the MRN complex, suggesting that MRE11 arginine methylation occurs prior to the binding of NBS1 and RAD50. Moreover, the first six methylated arginines are essential for the regulation of MRE11 DNA binding and nuclease activity. The inhibition of arginine methylation leads to a reduction in MRE11 and RAD51 focus formation on a unique double-strand break in vivo. Furthermore, the MRE11-methylated GAR domain is sufficient for its targeting to DNA damage foci and colocalization with gamma-H2AX. These studies highlight an important role for the GAR domain in regulating MRE11 function at the biochemical and cellular levels during DNA double-strand break repair.