971 resultados para 660302 Gas distribution
Resumo:
The primary requirements for high-biomass-concentration microalgal cultivation include a photon source and distribution, efficient gas exchange and suitable growth medium composition. However, for mass outdoor production of microalgae, growth medium composition is a major controlling factor as most of the other factors such as light source and distribution are virtually uncontrollable. This work utilises an elemental balance approach between growth medium and biomass compositions to obtain high-density microalgal cultures in an open system. F medium, commonly used for the cultivation of marine microalgae such as Tetraselmis suecica was redesigned on the basis of increasing the biomass capacity of its major deficient components to support high biomass concentrations (τ ∼ 5.0 % for N, S and τ ∼ 10 % P), and the entire formulation was dissolved in 0.2 um sterile filtered natural seawater. Results show that the new medium (F') displayed a maximum biomass concentration and total lipid concentration of 1.29 g L 1 and 108.7 mg L 1 respectively, which represents over 2-fold increase compared to that of the F medium. Keeping all variables constant except growth medium, and using F medium as the base case of 1 medium cost (MC) unit mg -1 lipid, the F' medium yielded lipid at a cost of only 0.35 MC unit mg -1 lipids. These results show that greater amounts of biomass and lipids can be obtained more economically with minimal extra effort simply by using an optimised growth medium.
Resumo:
Long-term measurements of particle number size distribution (PNSD) produce a very large number of observations and their analysis requires an efficient approach in order to produce results in the least possible time and with maximum accuracy. Clustering techniques are a family of sophisticated methods which have been recently employed to analyse PNSD data, however, very little information is available comparing the performance of different clustering techniques on PNSD data. This study aims to apply several clustering techniques (i.e. K-means, PAM, CLARA and SOM) to PNSD data, in order to identify and apply the optimum technique to PNSD data measured at 25 sites across Brisbane, Australia. A new method, based on the Generalised Additive Model (GAM) with a basis of penalised B-splines, was proposed to parameterise the PNSD data and the temporal weight of each cluster was also estimated using the GAM. In addition, each cluster was associated with its possible source based on the results of this parameterisation, together with the characteristics of each cluster. The performances of four clustering techniques were compared using the Dunn index and Silhouette width validation values and the K-means technique was found to have the highest performance, with five clusters being the optimum. Therefore, five clusters were found within the data using the K-means technique. The diurnal occurrence of each cluster was used together with other air quality parameters, temporal trends and the physical properties of each cluster, in order to attribute each cluster to its source and origin. The five clusters were attributed to three major sources and origins, including regional background particles, photochemically induced nucleated particles and vehicle generated particles. Overall, clustering was found to be an effective technique for attributing each particle size spectra to its source and the GAM was suitable to parameterise the PNSD data. These two techniques can help researchers immensely in analysing PNSD data for characterisation and source apportionment purposes.
Resumo:
Previous studies showed that a significant number of the particles present in indoor air are generated by cooking activities, and measured particle concentrations and exposures have been used to estimate the related human dose. The dose evaluation can be affected by the particle charge level which is usually not considered in particle deposition models. To this purpose, in this paper we show, for the very first time, the electric charge of particles generated during cooking activities and thus extending the interest on particle charging characterization to indoor micro-environments, so far essentially focused on outdoors. Particle number, together with positive and negative cluster ion concentrations, was monitored using a condensation particle counter and two air ion counters, respectively, during different cooking events. Positively-charged particle distribution fractions during gas combustion, bacon grilling, and eggplant grilling events were measured by two Scanning Mobility Particle Sizer spectrometers, used with and without a neutralizer. Finally, a Tandem Differential Mobility Analyzer was used to measure the charge specific particle distributions of bacon and eggplant grilling experiments, selecting particles of 30, 50, 80 and 100 nm in mobility diameter. The total fraction of positively-charged particles was 4.0%, 7.9%, and 5.6% for gas combustion, bacon grilling, and eggplant grilling events, respectively, then lower than other typical outdoor combustion-generated particles.
Resumo:
In response to current and increasing demand for assurance on greenhouse gas statements, the International Auditing and Assurance Standards Board (IAASB) released an exposure draft of a new assurance standard, ISAE 3410 'Assurance on a Greenhouse Gas Statement' (IFAC 2011), to provide comprehensive guidance on these types of greenhouse gas (GHG) assurance engagements. Internationally, approximately 50 percent of GHG statements are independently assured. The related assurance market is competitive, with the accounting profession and those outside the profession currently holding approximately equal shares. This paper highlights the characteristics of GHG assurance engagements that warrant multi-disciplinary teamwork, the unique and interdependent skill-sets that different practitioners bring to these engagements, and the market forces that create a demand for diverse providers.
Resumo:
Worldwide public concern over climate change and the need to limit greenhouse gas (hereafter, GHG) emissions has increasingly motivated public officials to consider more stringent environmental regulation and standards. The authors argue that the development of a new international assurance standard on GHG disclosures is an appropriate response by the auditing and assurance profession to meet these challenges. At its December 2007 meeting, the International Auditing and Assurance Standards Board (hereafter, IAASB) approved a project to consider the development of such a standard aimed at promoting trust and confidence in disclosures of GHG emissions, including disclosures required under emissions trading schemes. The authors assess the types of disclosures that can be assured, and outline the issues involved in developing an international assurance standard on GHG emissions disclosures. The discussion synthesizes the insights gained from four international roundtables on the proposed IAASB assurance standard held in Asia-Pacific, North America, and Europe during 2008, and an IAASB meeting addressing this topic in December 2008.
Resumo:
Healthy governance systems are key to delivering effective outcomes in any broad domain of natural resource management (NRM). One of Australia's emerging NRM governance domains is our national framework for greenhouse gas abatement (GGA), as delivered through a wide range of management practices in the Australian landscape. The emerging Landscape-Based GGA Domain represents an innovative governance space that straddles both the nation's broader NRM Policy and Delivery Domain and Australia's GGA Domain. As a point-in-time benchmark, we assess the health of this hybrid domain as it stood at the end of 2013. At that time, the domain was being progressed through the Australian government's Clean Energy Package and, more particularly, its Carbon Farming Initiative (CFI). While significant changes are currently under development by a new Australian government, this paper explores key areas of risk within the governance system underpinning this emerging hybrid domain at that point in time. We then map some potential reform or continuous improvement pathways required (from national to paddock scale) with the view to securing improved landscape outcomes over time through widespread GGA activities.
Resumo:
An expanding education market targeted through ‘bridging material’ enabling cineliteracies has the potential to offer Australian producers with increased distribution opportunities, educators with targeted teaching aids and students with enhanced learning outcomes. For Australian documentary producers, the key to unlocking the potential of the education sector is engaging with its curriculum-based requirements at the earliest stages of pre-production. Two key mechanisms can lead to effective educational engagement; the established area of study guides produced in association with the Australian Teachers of Media (ATOM) and the emerging area of philanthropic funding coordinated by the Documentary Australia Foundation (DAF). DAF has acted as a key financial and cultural philanthropic bridge between individuals, foundations, corporations and the Australian documentary sector for over 14 years. DAF does not make or commission films but through management and receipt of grants and donations provides ‘expertise, information, guidance and resources to help each sector work together to achieve their goals’. The DAF application process also requires film-makers to detail their ‘Education and Outreach Strategy’ for each film with 582 films registered and 39 completed as of June 2014. These education strategies that can range from detailed to cursory efforts offer valuable insights into the Australian documentary sector's historical and current expectations of education as a receptive and dynamic audience for quality factual content. A recurring film-maker education strategy found in the DAF data is an engagement with ATOM to create a study guide for their film. This study guide then acts as a ‘bridging material’ between content and education audience. The frequency of this effort suggests these study guides enable greater educator engagement with content and increased interest and distribution of the film to educators. The paper Education paths for documentary distribution: DAF, ATOM and the study guides that bind them will address issues arising out of the changing needs of the education sector and the impact targeting ‘cineliteracy’ outcomes may have for Australian documentary distribution.
Resumo:
Overvoltage and overloading due to high utilization of PVs are the main power quality concerns for future distribution power systems. This paper proposes a distributed control coordination strategy to manage multiple PVs within a network to overcome these issues. PVs reactive power is used to deal with over-voltages and PVs active power curtailment are regulated to avoid overloading. The proposed control structure is used to share the required contribution fairly among PVs, in proportion to their ratings. This approach is examined on a practical distribution network with multiple PVs.
Resumo:
Nanoporous Nb2O5 has been previously demonstrated to be a viable electrochromic material with strong intercalation characteristics. Despite showing such promising properties, its potential for optical gas sensing applications, which involves the production of ionic species such as H+, has yet to be explored. Nanoporous Nb2O5 can accommodate a large amount of H+ ions in a process that results in an energy bandgap change of the material, which induces an optical response. Here, we demonstrate the optical hydrogen gas (H¬2) sensing capability of nanoporous anodic Nb2O5 with a large surface-to-volume ratio prepared via a high temperature anodization method. The large active surface area of the film provides enhanced pathways for efficient hydrogen adsorption and dissociation, which are facilitated by a thin layer of Pt catalyst. We show that the process of H2 sensing causes optical modulations that are investigated in terms of response magnitudes and dynamics. The optical modulations induced by the intercalation process and sensing properties of nanoporous anodic Nb2O5 shown in this work can potentially be used for future optical gas sensing systems.
Resumo:
The upstream oil and gas industry has been contending with massive data sets and monolithic files for many years, but “Big Data” is a relatively new concept that has the potential to significantly re-shape the industry. Despite the impressive amount of value that is being realized by Big Data technologies in other parts of the marketplace, however, much of the data collected within the oil and gas sector tends to be discarded, ignored, or analyzed in a very cursory way. This viewpoint examines existing data management practices in the upstream oil and gas industry, and compares them to practices and philosophies that have emerged in organizations that are leading the way in Big Data. The comparison shows that, in companies that are widely considered to be leaders in Big Data analytics, data is regarded as a valuable asset—but this is usually not true within the oil and gas industry insofar as data is frequently regarded there as descriptive information about a physical asset rather than something that is valuable in and of itself. The paper then discusses how the industry could potentially extract more value from data, and concludes with a series of policy-related questions to this end.
Resumo:
PURPOSE: This paper describes dynamic agent composition, used to support the development of flexible and extensible large-scale agent-based models (ABMs). This approach was motivated by a need to extend and modify, with ease, an ABM with an underlying networked structure as more information becomes available. Flexibility was also sought after so that simulations are set up with ease, without the need to program. METHODS: The dynamic agent composition approach consists in having agents, whose implementation has been broken into atomic units, come together at runtime to form the complex system representation on which simulations are run. These components capture information at a fine level of detail and provide a vast range of combinations and options for a modeller to create ABMs. RESULTS: A description of the dynamic agent composition is given in this paper, as well as details about its implementation within MODAM (MODular Agent-based Model), a software framework which is applied to the planning of the electricity distribution network. Illustrations of the implementation of the dynamic agent composition are consequently given for that domain throughout the paper. It is however expected that this approach will be beneficial to other problem domains, especially those with a networked structure, such as water or gas networks. CONCLUSIONS: Dynamic agent composition has many advantages over the way agent-based models are traditionally built for the users, the developers, as well as for agent-based modelling as a scientific approach. Developers can extend the model without the need to access or modify previously written code; they can develop groups of entities independently and add them to those already defined to extend the model. Users can mix-and-match already implemented components to form large-scales ABMs, allowing them to quickly setup simulations and easily compare scenarios without the need to program. The dynamic agent composition provides a natural simulation space over which ABMs of networked structures are represented, facilitating their implementation; and verification and validation of models is facilitated by quickly setting up alternative simulations.
Resumo:
Due to the increasing recognition of global climate change, the building and construction industry is under pressure to reduce carbon emissions. A central issue in striving towards reduced carbon emissions is the need for a practicable and meaningful yardstick for assessing and communicating greenhouse gas (GHG) results. ISO 14067 was published by the International Organization for Standardization in May 2013. By providing specific requirements in the life cycle assessment (LCA) approach, the standard clarifies the GHG assessment in the aspects of choosing system boundaries and simulating use and end-of-life phases when quantifying carbon footprint of products (CFPs). More importantly, the standard, for the first time, provides step-to-step guidance and standardized template for communicating CFPs in the form of CFP external communication report, CFP performance tracking report, CFP declaration and CFP label. ISO 14067 therefore makes a valuable contribution to GHG quantification and transparent communication and comparison of CFPs. In addition, as cradle-to-grave should be used as the system boundary if use and end-of-life phases can be simulated, ISO 14067 will hopefully promote the development and implementation of simulation technologies, with Building Information Modelling (BIM) in particular, in the building and construction industry.
Resumo:
Integrating renewable energy into public space is becoming more common as a climate change solution. However, this approach is often guided by the environmental pillar of sustainability, with less focus on the economic and social pillars. The purpose of this paper is to examine this issue in the speculative renewable energy propositions for Freshkills Park in New York City submitted for the 2012 Land Art Generator Initiative (LAGI) competition. This paper first proposes an optimal electricity distribution (OED) framework in and around public spaces based on relevant ecology and energy theory (Odum’s fourth and fifth law of thermodynamics). This framework addresses social engagement related to public interaction, and economic engagement related to the estimated quantity of electricity produced, in conjunction with environmental engagement related to the embodied energy required to construct the renewable energy infrastructure. Next, the study uses the OED framework to analyse the top twenty-five projects submitted for the LAGI 2012 competition. The findings reveal an electricity distribution imbalance and suggest a lack of in-depth understanding about sustainable electricity distribution within public space design. The paper concludes with suggestions for future research.
Resumo:
As cities are rapidly developing new interventions against climate change, embedding renewable energy in public spaces is an important strategy. However, most interventions primarily include environmental sustainability while neglecting the social and economic interrelationships of electricity production. Although there is a growing interest in sustainability within environmental design and landscape architecture, public spaces are still awaiting viable energy-conscious design and assessment interventions. The purpose of this paper is to investigate this issue in a renowned public space—Ballast Point Park in Sydney—using a triple bottom line (TBL) case study approach. The emerging factors and relationships of each component of TBL, within the context of public open space, are identified and discussed. With specific focus on renewable energy distribution in and around Ballast Point Park, the paper concludes with a general design framework, which conceptualizes an optimal distribution of onsite electricity produced from renewable sources embedded in public open spaces.
Resumo:
The products evolved during the thermal decomposition of the coal-derived pyrite/marcasite were studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR–MS) technique. The main gases and volatile products released during the thermal decomposition of the coal-derived pyrite/marcasite are water (H2O), carbon dioxide (CO2), and sulfur dioxide (SO2). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved product H2O is mainly released at below 300 °C; (2) under the temperature of 450–650 °C, the main evolved products are SO2 and small amount of CO2. It is worth mentioning that SO3 was not observed as a product as no peak was observed in the m/z = 80 curve. The chemical substance SO2 is present as the main gaseous product in the thermal decomposition for the sample. The coal-derived pyrite/marcasite is different from mineral pyrite in thermal decomposition temperature. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanations have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials.