988 resultados para 513
Resumo:
[EN] 1. The present study examined whether the blood flow to exercising muscles becomes reduced when cardiac output and systemic vascular conductance decline with dehydration during prolonged exercise in the heat. A secondary aim was to determine whether the upward drift in oxygen consumption (VO2) during prolonged exercise is confined to the active muscles. 2. Seven euhydrated, endurance-trained cyclists performed two bicycle exercise trials in the heat (35 C; 40-50 % relative humidity; 61 +/- 2 % of maximal VO2), separated by 1 week. During the first trial (dehydration trial, DE), they bicycled until volitional exhaustion (135 +/- 4 min, mean +/- s.e.m.), while developing progressive dehydration and hyperthermia (3.9 +/- 0.3 % body weight loss; 39.7 +/- 0.2 C oesophageal temperature, Toes). In the second trial (control trial), they bicycled for the same period of time while maintaining euhydration by ingesting fluids and stabilizing Toes at 38.2 +/- 0.1 C after 30 min exercise. 3. In both trials, cardiac output, leg blood flow (LBF), vascular conductance and VO2 were similar after 20 min exercise. During the 20 min-exhaustion period of DE, cardiac output, LBF and systemic vascular conductance declined significantly (8-14 %; P < 0.05) yet muscle vascular conductance was unaltered. In contrast, during the same period of control, all these cardiovascular variables tended to increase. After 135 +/- 4 min of DE, the 2.0 +/- 0.6 l min-1 lower blood flow to the exercising legs accounted for approximately two-thirds of the reduction in cardiac output. Blood flow to the skin also declined markedly as forearm blood flow was 39 +/- 8 % (P < 0.05) lower in DE vs. control after 135 +/- 4 min. 4. In both trials, whole body VO2 and leg VO2 increased in parallel and were similar throughout exercise. The reduced leg blood flow in DE was accompanied by an even greater increase in femoral arterial-venous O2 (a-vO2) difference. 5. It is concluded that blood flow to the exercising muscles declines significantly with dehydration, due to a lowering in perfusion pressure and systemic blood flow rather than increased vasoconstriction. Furthermore, the progressive increase in oxygen consumption during exercise is confined to the exercising skeletal muscles.
Resumo:
The ideal approach for the long term treatment of intestinal disorders, such as inflammatory bowel disease (IBD), is represented by a safe and well tolerated therapy able to reduce mucosal inflammation and maintain homeostasis of the intestinal microbiota. A combined therapy with antimicrobial agents, to reduce antigenic load, and immunomodulators, to ameliorate the dysregulated responses, followed by probiotic supplementation has been proposed. Because of the complementary mechanisms of action of antibiotics and probiotics, a combined therapeutic approach would give advantages in terms of enlargement of the antimicrobial spectrum, due to the barrier effect of probiotic bacteria, and limitation of some side effects of traditional chemiotherapy (i.e. indiscriminate decrease of aggressive and protective intestinal bacteria, altered absorption of nutrient elements, allergic and inflammatory reactions). Rifaximin (4-deoxy-4’-methylpyrido[1’,2’-1,2]imidazo[5,4-c]rifamycin SV) is a product of synthesis experiments designed to modify the parent compound, rifamycin, in order to achieve low gastrointestinal absorption while retaining good antibacterial activity. Both experimental and clinical pharmacology clearly show that this compound is a non systemic antibiotic with a broad spectrum of antibacterial action, covering Gram-positive and Gram-negative organisms, both aerobes and anaerobes. Being virtually non absorbed, its bioavailability within the gastrointestinal tract is rather high with intraluminal and faecal drug concentrations that largely exceed the MIC values observed in vitro against a wide range of pathogenic microorganisms. The gastrointestinal tract represents therefore the primary therapeutic target and gastrointestinal infections the main indication. The little value of rifaximin outside the enteric area minimizes both antimicrobial resistance and systemic adverse events. Fermented dairy products enriched with probiotic bacteria have developed into one of the most successful categories of functional foods. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer a health benefit on the host” (FAO/WHO, 2002), and mainly include Lactobacillus and Bifidobacterium species. Probiotic bacteria exert a direct effect on the intestinal microbiota of the host and contribute to organoleptic, rheological and nutritional properties of food. Administration of pharmaceutical probiotic formula has been associated with therapeutic effects in treatment of diarrhoea, constipation, flatulence, enteropathogens colonization, gastroenteritis, hypercholesterolemia, IBD, such as ulcerative colitis (UC), Crohn’s disease, pouchitis and irritable bowel syndrome. Prerequisites for probiotics are to be effective and safe. The characteristics of an effective probiotic for gastrointestinal tract disorders are tolerance to upper gastrointestinal environment (resistance to digestion by enteric or pancreatic enzymes, gastric acid and bile), adhesion on intestinal surface to lengthen the retention time, ability to prevent the adherence, establishment and/or replication of pathogens, production of antimicrobial substances, degradation of toxic catabolites by bacterial detoxifying enzymatic activities, and modulation of the host immune responses. This study was carried out using a validated three-stage fermentative continuous system and it is aimed to investigate the effect of rifaximin on the colonic microbial flora of a healthy individual, in terms of bacterial composition and production of fermentative metabolic end products. Moreover, this is the first study that investigates in vitro the impact of the simultaneous administration of the antibiotic rifaximin and the probiotic B. lactis BI07 on the intestinal microbiota. Bacterial groups of interest were evaluated using culture-based methods and molecular culture-independent techniques (FISH, PCR-DGGE). Metabolic outputs in terms of SCFA profiles were determined by HPLC analysis. Collected data demonstrated that rifaximin as well as antibiotic and probiotic treatment did not change drastically the intestinal microflora, whereas bacteria belonging to Bifidobacterium and Lactobacillus significantly increase over the course of the treatment, suggesting a spontaneous upsurge of rifaximin resistance. These results are in agreement with a previous study, in which it has been demonstrated that rifaximin administration in patients with UC, affects the host with minor variations of the intestinal microflora, and that the microbiota is restored over a wash-out period. In particular, several Bifidobacterium rifaximin resistant mutants could be isolated during the antibiotic treatment, but they disappeared after the antibiotic suspension. Furthermore, bacteria belonging to Atopobium spp. and E. rectale/Clostridium cluster XIVa increased significantly after rifaximin and probiotic treatment. Atopobium genus and E. rectale/Clostridium cluster XIVa are saccharolytic, butyrate-producing bacteria, and for these characteristics they are widely considered health-promoting microorganisms. The absence of major variations in the intestinal microflora of a healthy individual and the significant increase in probiotic and health-promoting bacteria concentrations support the rationale of the administration of rifaximin as efficacious and non-dysbiosis promoting therapy and suggest the efficacy of an antibiotic/probiotic combined treatment in several gut pathologies, such as IBD. To assess the use of an antibiotic/probiotic combination for clinical management of intestinal disorders, genetic, proteomic and physiologic approaches were employed to elucidate molecular mechanisms determining rifaximin resistance in Bifidobacterium, and the expected interactions occurring in the gut between these bacteria and the drug. The ability of an antimicrobial agent to select resistance is a relevant factor that affects its usefulness and may diminish its useful life. Rifaximin resistance phenotype was easily acquired by all bifidobacteria analyzed [type strains of the most representative intestinal bifidobacterial species (B. infantis, B. breve, B. longum, B. adolescentis and B. bifidum) and three bifidobacteria included in a pharmaceutical probiotic preparation (B. lactis BI07, B. breve BBSF and B. longum BL04)] and persisted for more than 400 bacterial generations in the absence of selective pressure. Exclusion of any reversion phenomenon suggested two hypotheses: (i) stable and immobile genetic elements encode resistance; (ii) the drug moiety does not act as an inducer of the resistance phenotype, but enables selection of resistant mutants. Since point mutations in rpoB have been indicated as representing the principal factor determining rifampicin resistance in E. coli and M. tuberculosis, whether a similar mechanism also occurs in Bifidobacterium was verified. The analysis of a 129 bp rpoB core region of several wild-type and resistant bifidobacteria revealed five different types of miss-sense mutations in codons 513, 516, 522 and 529. Position 529 was a novel mutation site, not previously described, and position 522 appeared interesting for both the double point substitutions and the heterogeneous profile of nucleotide changes. The sequence heterogeneity of codon 522 in Bifidobacterium leads to hypothesize an indirect role of its encoded amino acid in the binding with the rifaximin moiety. These results demonstrated the chromosomal nature of rifaximin resistance in Bifidobacterium, minimizing risk factors for horizontal transmission of resistance elements between intestinal microbial species. Further proteomic and physiologic investigations were carried out using B. lactis BI07, component of a pharmaceutical probiotic preparation, as a model strain. The choice of this strain was determined based on the following elements: (i) B. lactis BI07 is able to survive and persist in the gut; (ii) a proteomic overview of this strain has been recently reported. The involvement of metabolic changes associated with rifaximin resistance was investigated by proteomic analysis performed with two-dimensional electrophoresis and mass spectrometry. Comparative proteomic mapping of BI07-wt and BI07-res revealed that most differences in protein expression patterns were genetically encoded rather than induced by antibiotic exposure. In particular, rifaximin resistance phenotype was characterized by increased expression levels of stress proteins. Overexpression of stress proteins was expected, as they represent a common non specific response by bacteria when stimulated by different shock conditions, including exposure to toxic agents like heavy metals, oxidants, acids, bile salts and antibiotics. Also, positive transcription regulators were found to be overexpressed in BI07-res, suggesting that bacteria could activate compensatory mechanisms to assist the transcription process in the presence of RNA polymerase inhibitors. Other differences in expression profiles were related to proteins involved in central metabolism; these modifications suggest metabolic disadvantages of resistant mutants in comparison with sensitive bifidobacteria in the gut environment, without selective pressure, explaining their disappearance from faeces of patients with UC after interruption of antibiotic treatment. The differences observed between BI07-wt e BI07-res proteomic patterns, as well as the high frequency of silent mutations reported for resistant mutants of Bifidobacterium could be the consequences of an increased mutation rate, mechanism which may lead to persistence of resistant bacteria in the population. However, the in vivo disappearance of resistant mutants in absence of selective pressure, allows excluding the upsurge of compensatory mutations without loss of resistance. Furthermore, the proteomic characterization of the resistant phenotype suggests that rifaximin resistance is associated with a reduced bacterial fitness in B. lactis BI07-res, supporting the hypothesis of a biological cost of antibiotic resistance in Bifidobacterium. The hypothesis of rifaximin inactivation by bacterial enzymatic activities was verified by using liquid chromatography coupled with tandem mass spectrometry. Neither chemical modifications nor degradation derivatives of the rifaximin moiety were detected. The exclusion of a biodegradation pattern for the drug was further supported by the quantitative recovery in BI07-res culture fractions of the total rifaximin amount (100 μg/ml) added to the culture medium. To confirm the main role of the mutation on the β chain of RNA polymerase in rifaximin resistance acquisition, transcription activity of crude enzymatic extracts of BI07-res cells was evaluated. Although the inhibition effects of rifaximin on in vitro transcription were definitely higher for BI07-wt than for BI07-res, a partial resistance of the mutated RNA polymerase at rifaximin concentrations > 10 μg/ml was supposed, on the basis of the calculated differences in inhibition percentages between BI07-wt and BI07-res. By considering the resistance of entire BI07-res cells to rifaximin concentrations > 100 μg/ml, supplementary resistance mechanisms may take place in vivo. A barrier for the rifaximin uptake in BI07-res cells was suggested in this study, on the basis of the major portion of the antibiotic found to be bound to the cellular pellet respect to the portion recovered in the cellular lysate. Related to this finding, a resistance mechanism involving changes of membrane permeability was supposed. A previous study supports this hypothesis, demonstrating the involvement of surface properties and permeability in natural resistance to rifampicin in mycobacteria, isolated from cases of human infection, which possessed a rifampicin-susceptible RNA polymerase. To understand the mechanism of membrane barrier, variations in percentage of saturated and unsaturated FAs and their methylation products in BI07-wt and BI07-res membranes were investigated. While saturated FAs confer rigidity to membrane and resistance to stress agents, such as antibiotics, a high level of lipid unsaturation is associated with high fluidity and susceptibility to stresses. Thus, the higher percentage of saturated FAs during the stationary phase of BI07-res could represent a defence mechanism of mutant cells to prevent the antibiotic uptake. Furthermore, the increase of CFAs such as dihydrosterculic acid during the stationary phase of BI07-res suggests that this CFA could be more suitable than its isomer lactobacillic acid to interact with and prevent the penetration of exogenous molecules including rifaximin. Finally, the impact of rifaximin on immune regulatory functions of the gut was evaluated. It has been suggested a potential anti-inflammatory effect of rifaximin, with reduced secretion of IFN-γ in a rodent model of colitis. Analogously, it has been reported a significant decrease in IL-8, MCP-1, MCP-3 e IL-10 levels in patients affected by pouchitis, treated with a combined therapy of rifaximin and ciprofloxacin. Since rifaximin enables in vivo and in vitro selection of Bifidobacterium resistant mutants with high frequency, the immunomodulation activities of rifaximin associated with a B. lactis resistant mutant were also taken into account. Data obtained from PBMC stimulation experiments suggest the following conclusions: (i) rifaximin does not exert any effect on production of IL-1β, IL-6 and IL-10, whereas it weakly stimulates production of TNF-α; (ii) B. lactis appears as a good inducer of IL-1β, IL-6 and TNF-α; (iii) combination of BI07-res and rifaximin exhibits a lower stimulation effect than BI07-res alone, especially for IL-6. These results confirm the potential anti-inflammatory effect of rifaximin, and are in agreement with several studies that report a transient pro-inflammatory response associated with probiotic administration. The understanding of the molecular factors determining rifaximin resistance in the genus Bifidobacterium assumes an applicative significance at pharmaceutical and medical level, as it represents the scientific basis to justify the simultaneous use of the antibiotic rifaximin and probiotic bifidobacteria in the clinical treatment of intestinal disorders.
Resumo:
ZusammenfassungLautäußerungen von Singvögeln (Passeriformes) werden gemeinhin als Träger phylogenetischer Information betrachtet, obwohl direkte Nachweise in vergleichend bioakustischen Studien rar sind. Dieser Thematik widmet sich meine Dissertation am Beispiel dreier Singvogelgruppen: Goldhähnchen (Regulus), Goldbrillenlaubsänger (Seicercus) sowie verwandter Laubsänger (Phylloscopus) und Kohlmeisen (Parus major). Neben der Erhebung bioakustischer Daten wurde für jede Gruppe eine molekulare Phylogenie basierend auf Cytochrom-b-Sequenzen erstellt und für verschiedene akustische Merkmale Homoplasie-indizes berechnet (CI, RI und RC). Die phylogenetisch informativen Gesangsstrukturen innerhalb der Gattungen Regulus und Seicercus/ Phylloscopus sind sämtlich Syntaxmerkmale, zumeist der Gesamtstrophe, seltener von Strophenabschnitten. Bei den Goldhähnchen (Regulus) sind solche Syntaxmerkmale angeboren, Elementmerkmale hingegen sind erlernt und phylogenetisch nicht informativ. Die innerhalb der Kohlmeisen homogene Gesangssyntax ist erst auf höherer taxonomischer Ebene (Gattung Parus) ein informatives Merkmal. Der mittels einer Merkmalsmatrix berechnete akustische Divergenzindex zwischen Taxonpaaren steigt signifikant proportional zur genetischen Distanz. Damit ist erstmalig der Zusammenhang zwischen genetischer und akustischer Differenzierung quantifiziert. Die molekulare Phylogenie erhellt zudem bislang ungeklärte phylogenetische Beziehungen innerhalb aller drei Taxa. Diese werden im Hinblick auf das phylogenetische und das biologische Artkonzept diskutiert. Der Artstatus des Teneriffa-Goldhähnchens (Regulus teneriffae) sowie der bokharensis-Kohlmeisen ist fragwürdig aufgrund ihrer engen Verwandtschaft zu zu einzelnen Subspezies der Wintergoldhähnchen bzw. der Kohlmeisen.
Resumo:
BACKGROUND: Most prevalence studies on oral leukoplakia (OL) in China have been published in the Chinese language. The present review on the literature in Chinese aimed at making the data available to colleagues who are not familiar with the Chinese language. METHODS: The overall rate and 95% confidence interval of OL were calculated using Excel 2003. RESULTS: Overall prevalence of OL was 9.18% (95%CI = 9.06-9.30%). Gender ratio of prevalence was 8.03:1 (males/females). Prevalence was high in age groups over 40 years with the highest in the group aged 60-69 years (21.04%, 95%CI = 19.95-22.13%). The buccal mucosa was most commonly affected (47.08%, 95%CI = 46.52-47.64%), followed by lip (39.09%), palate (9.85%), gingiva (1.80%), and tongue (1.46%). The prevalence in smokers was 23.43% and in non-smokers 1.93%. Among three variants of smoking, the traditional Hanyan pipe smoking carried the highest risk for the development of OL followed by cigarette and Shuiyan water pipe smoking. The rate of alcohol drinkers with OL was 54.50% and 22.21% in individuals without OL. No case of oral cancer was found in six surveys. CONCLUSIONS: The present data on the prevalence of OL in China are comparable to those in other parts of the world. Some traditional smoking habits, however, are particular to certain regions of China.
Resumo:
All preparation efforts of biological samples in electron microscopy are focused to preserve structures as close as possible to the native state. To achieve this goal with tissues, it is of advantage to have a very short time between excision and fixation. The most common approach is chemical fixation: cross-linking of the tissue samples with aldehydes followed by postfixation with osmium tetroxide. Here, the fastest approach for tissue samples is perfusion. However, the diffusion of the fixation solution from blood vessels into the depth of the tissue is still slow and does not allow an overall instant fixation of a single cell. As a result, osmotic effects become evident (swelling or shrinkage of cell organelles). Another possibility is to take a tissue sample from the experimental animal. Excision of tissue can last quite some time, which results in even more pronounced autolytic induced osmotic effects. Furthermore, the animal does not survive the procedure in most cases. Alternatively, microbiopsies are an elegant technique to rapidly excise small quantities of tissue. Some tissues, such as liver and muscle, may be obtained using a non-lethal approach. To avoid the artifacts introduced by chemical fixation, high-pressure freezing of microbiopsies (brain, liver, kidney, and muscle) is a powerful alternative to chemical fixation. Here, we describe the microbiopsy method, and high-pressure freezing/freeze-substitution (HPF/FS) as a follow-up procedure. Cryosectioning of high-pressure frozen samples is optimally preserving the ultrastructure; however, it is not considered to be a routine approach yet.
Resumo:
Background In the 19th century, eminent French sociologist Emile Durkheim found suicide rates to be higher in the Protestant compared with the Catholic cantons of Switzerland. We examined religious affiliation and suicide in modern Switzerland, where assisted suicide is legal. Methods The 2000 census records of 1 722 456 (46.0%) Catholics, 1 565 452 (41.8%) Protestants and 454 397 (12.2%) individuals with no affiliation were linked to mortality records up to December 2005. The association between religious affiliation and suicide, with the Protestant faith serving as the reference category, was examined in Cox regression models. Hazard ratios (HRs) with 95% confidence intervals (CIs) were adjusted for age, marital status, education, type of household, language and degree of urbanization. Results Suicide rates per 100 000 inhabitants were 19.7 in Catholics (1664 suicides), 28.5 in Protestants (2158 suicides) and 39.0 in those with no affiliation (882 suicides). Associations with religion were modified by age and gender (P < 0.0001). Compared with Protestant men aged 35–64 years, HRs (95% CI) for all suicides were 0.80 (0.73–0.88) in Catholic men and 1.09 (0.98–1.22) in men with no affiliation; and 0.60 (0.53–0.67) and 1.96 (1.69–2.27), respectively, in men aged 65–94 years. Corresponding HRs in women aged 35–64 years were 0.90 (0.80–1.03) and 1.46 (1.25–1.72); and 0.67 (0.59–0.77) and 2.63 (2.22–3.12) in women aged 65–94 years. The association was strongest for suicides by poisoning in the 65–94-year-old age group, the majority of which was assisted: HRs were 0.45 (0.35–0.59) for Catholic men and 3.01 (2.37–3.82) for men with no affiliation; 0.44 (0.36–0.55) for Catholic women and 3.14 (2.51–3.94) for women with no affiliation. Conclusions In Switzerland, the protective effect of a religious affiliation appears to be stronger in Catholics than in Protestants, stronger in older than in younger people, stronger in women than in men, and particularly strong for assisted suicides.
Resumo:
Introduction Reduced left ventricular function in patients with severe symptomatic valvular aortic stenosis is associated with impaired clinical outcome in patients undergoing surgical aortic valve replacement (SAVR). Transcatheter Aortic Valve Implantation (TAVI) has been shown non-inferior to SAVR in high-risk patients with respect to mortality and may result in faster left ventricular recovery. Methods We investigated clinical outcomes of high-risk patients with severe aortic stenosis undergoing medical treatment (n = 71) or TAVI (n = 256) stratified by left ventricular ejection fraction (LVEF) in a prospective single center registry. Results Twenty-five patients (35%) among the medical cohort were found to have an LVEF≤30% (mean 26.7±4.1%) and 37 patients (14%) among the TAVI patients (mean 25.2±4.4%). Estimated peri-interventional risk as assessed by logistic EuroSCORE was significantly higher in patients with severely impaired LVEF as compared to patients with LVEF>30% (medical/TAVI 38.5±13.8%/40.6±16.4% versus medical/TAVI 22.5±10.8%/22.1±12.8%, p <0.001). In patients undergoing TAVI, there was no significant difference in the combined endpoint of death, myocardial infarction, major stroke, life-threatening bleeding, major access-site complications, valvular re-intervention, or renal failure at 30 days between the two groups (21.0% versus 27.0%, p = 0.40). After TAVI, patients with LVEF≤30% experienced a rapid improvement in LVEF (from 25±4% to 34±10% at discharge, p = 0.002) associated with improved NYHA functional class at 30 days (decrease ≥1 NYHA class in 95%). During long-term follow-up no difference in survival was observed in patients undergoing TAVI irrespective of baseline LVEF (p = 0.29), whereas there was a significantly higher mortality in medically treated patients with severely reduced LVEF (log rank p = 0.001). Conclusion TAVI in patients with severely reduced left ventricular function may be performed safely and is associated with rapid recovery of systolic left ventricular function and heart failure symptoms.
Resumo:
Rats learn to prefer flavors associated with postingestive effects of nutrients. The physiological signals underlying this postingestive reward are unknown. We have previously shown that rats readily learn to prefer a flavor that was consumed early in a multi-flavored meal when glucose is infused intragastrically (IG), suggesting rapid postingestive reward onset. The present experiments investigate the timing of postingestive fat reward, by providing distinctive flavors in the first and second halves of meals accompanied by IG fat infusion. Learning stronger preference for the earlier or later flavor would indicate when the rewarding postingestive effects are sensed. Rats consumed sweetened, calorically-dilute flavored solutions accompanied by IG high-fat infusion (+ sessions) or water (− sessions). Each session included an “Early” flavor for 8 min followed by a “Late” flavor for 8 min. Learned preferences were then assessed in two-bottle tests (no IG infusion) between Early(+) vs. Early(−), Late(+) vs. Late(−), Early(+) vs. Late(+), and Early(−) vs. Late(−). Rats only preferred Late(+), not Early(+), relative to their respective (−) flavors. In a second experiment rats trained with a higher fat concentration learned to prefer Early(+) but more strongly preferred Late(+). Learned preferences were evident when rats were tested deprived or recently satiated. Unlike with glucose, ingested fat appears to produce a slower-onset rewarding signal, detected later in a meal or after its termination, becoming more strongly associated with flavors towards the end of the meal. This potentially contributes to enhanced liking for dessert foods, which persists even when satiated.