991 resultados para 3D power Doppler
Using 3D surface datasets to understand landslide evolution: From analogue models to real case study
Resumo:
Early detection of landslide surface deformation with 3D remote sensing techniques, as TLS, has become a great challenge during last decade. To improve our understanding of landslide deformation, a series of analogue simulation have been carried out on non-rigid bodies coupled with 3D digitizer. All these experiments have been carried out under controlled conditions, as water level and slope angle inclination. We were able to follow 3D surface deformation suffered by complex landslide bodies from precursory deformation still larger failures. These experiments were the basis for the development of a new algorithm for the quantification of surface deformation using automatic tracking method on discrete points of the slope surface. To validate the algorithm, comparisons were made between manually obtained results and algorithm surface displacement results. Outputs will help in understanding 3D deformation during pre-failure stages and failure mechanisms, which are fundamental aspects for future implementation of 3D remote sensing techniques in early warning systems.
Resumo:
El diagnòstic mitjançant la imatge mèdica s’ha convertit en una eina fonamental en la pràctica clínica, permet entre altres coses, reconstruir a partir d’un conjunt d’imatges 2D, obtingudes a partir d’aparells de captació, qualsevol part de l’organisme d’un pacient i representar-lo en un model 3D. Sobre aquest model 3D poden realitzar-se diferents operacions que faciliten el diagnòstic i la presa de decisions als especialistes. El projecte que es presenta forma part del desenvolupament de la plataforma informàtica de visualització i tractament de dades mèdiques, anomenada Starviewer, que desenvolupen conjuntament el laboratori de Gràfics i Imatge (GiLab) de la Universitat de Girona i l’ Institut de Diagnòstic per la Imatge (IDI) de l’Hospital Josep Trueta de Girona. En particular, en aquest projecte es centra en el diagnòstic del càncer colorectal i el desenvolupament de mètodes i tècniques de suport al seu diagnòstic. Els dos punts claus en el tractament d’aqueta patologia són: la detecció de les lesions I l’estudi de l’evolució d’aquestes lesions, una vegada s’ha iniciat el tractament tumoral. L’objectiu principal d’aquest projecte és implementar i integrar en la plataforma Starviewer les tècniques de visualització i processament de dades necessàries per donar suport als especialistes en el diagnòstic de les lesions del colon. Donada la dificultat en el processament de les dades reals del budell ens proposem: dissenyar i implementar un sistema per crear models sintètics del budell; estudiar, implementar i avaluar les tècniques de processament d’imatge que calen per segmentar lesions de budell; dissenyar i implementar un sistema d’exploració del budell iintegrar de tots els mòduls implementats en la plataforma starviewer
Resumo:
L’estudi consta de dues grans parts que serien la part de dissenyar, desenvolupar i implementar els mètodes de segmentació que ens serviran per separar els punts rígids dels punts no rígids/deformables. I l’altra part seria la d’obtenir reconstruccions 3D a partir d’un sistema estèreo, passant per la calibració de les càmeres del sistema, la realització de captures d’experiments reals, la generació de reconstruccions 3D per finalment posar a prova els mètodes desenvolupats en la part anterior
Resumo:
We created a high-throughput modality of photoactivated localization microscopy (PALM) that enables automated 3D PALM imaging of hundreds of synchronized bacteria during all stages of the cell cycle. We used high-throughput PALM to investigate the nanoscale organization of the bacterial cell division protein FtsZ in live Caulobacter crescentus. We observed that FtsZ predominantly localizes as a patchy midcell band, and only rarely as a continuous ring, supporting a model of "Z-ring" organization whereby FtsZ protofilaments are randomly distributed within the band and interact only weakly. We found evidence for a previously unidentified period of rapid ring contraction in the final stages of the cell cycle. We also found that DNA damage resulted in production of high-density continuous Z-rings, which may obstruct cytokinesis. Our results provide a detailed quantitative picture of in vivo Z-ring organization.
Resumo:
El projecte desenvolupat ha tractat l’estudi i disseny d’un motor 3D interactiu a la consolaGame Boy Advance (GBA). La GBA disposa d’un processador ARM7TDMI a 16’78Mhz i no disposa de operacions 3D per-hardware, és una consola lenta en comparació lesque podem trobar al mercat d’avui en dia. Aquest treball, va partir de la construcció d’un prototipus ray-casting per-columna. Després,vàrem adaptar-lo a una estructura de portals i sectors. Més tard,es va introduir el mapeig de sostre/terra i de paisatges. Per últim,vàrem introduir efectes a la renderització per donar més realismeal recorregut del món, com il·luminació, objectes, etc.Tot i que es va estudiar l’arquitectura d’un motor eficient, no estenia prou per arribar a tenir un motor interactiu. Una de lestasques més difícils va ser la part de optimització. Peraconseguir-ho s’ha hagut de substituir operacions a temps realcostoses a temps de execució, replantejar parts de l’algorisme per fer-lo més eficient, entre altres
Resumo:
Technological limitations and power constraints are resulting in high-performance parallel computing architectures that are based on large numbers of high-core-count processors. Commercially available processors are now at 8 and 16 cores and experimental platforms, such as the many-core Intel Single-chip Cloud Computer (SCC) platform, provide much higher core counts. These trends are presenting new sets of challenges to HPC applications including programming complexity and the need for extreme energy efficiency.In this work, we first investigate the power behavior of scientific PGAS application kernels on the SCC platform, and explore opportunities and challenges for power management within the PGAS framework. Results obtained via empirical evaluation of Unified Parallel C (UPC) applications on the SCC platform under different constraints, show that, for specific operations, the potential for energy savings in PGAS is large; and power/performance trade-offs can be effectively managed using a cross-layerapproach. We investigate cross-layer power management using PGAS language extensions and runtime mechanisms that manipulate power/performance tradeoffs. Specifically, we present the design, implementation and evaluation of such a middleware for application-aware cross-layer power management of UPC applications on the SCC platform. Finally, based on our observations, we provide a set of recommendations and insights that can be used to support similar power management for PGAS applications on other many-core platforms.
Resumo:
Introduction: Ankle arthropathy is associated with a decreased motion of the ankle-hindfoot during ambulation. Ankle arthrodesis was shown to result in degeneration of the neighbour joints of the foot. Inversely, total ankle arthroplasty conceptually preserves the adjacent joints because of the residual mobility of the ankle but this has not been demonstrated yet in vivo. It has also been reported that degenerative ankle diseases, and even arthrodesis, do not result in alteration of the knee and hip joints. We present the preliminary results of a new approach of this problem based on ambulatory gait analysis. Patients and Methods: Motion analysis of the lower limbs was performed using a Physilog® (BioAGM, CH) system consisting of three-dimensional (3D) accelerometer and gyroscope, coupled to a magnetic system (Liberty©, Polhemus, USA). Both systems have been validated. Three groups of two patients were included into this pilot study and compared to healthy subjects (controls) during level walking: patients with ankle osteoarthritis (group 1), patients treated by ankle arthrodesis (group 2), patients treated by total ankle prosthesis (group 3). Results: Motion patterns of all analyzed joints over more than 20 gait cycles in each subject were highly repeatable. Motion amplitude of the ankle-hindfoot in control patients was similar to recently reported results. Ankle arthrodesis limited the motion of the ankle-hindfoot in the sagittal and horizontal planes. The prosthetic ankle allowed a more physiologic movement in the sagittal plane only. Ankle arthritis and its treatments did not influence the range of motion of the knee and hip joint during stance phase, excepted for a slight decrease of the hip flexion in groups 1 and 2. Conclusion: The reliability of the system was shown by the repeatability of the consecutive measurements. The results of this preliminary study were similar to those obtained through laboratory gait analysis. However, our system has the advantage to allow ambulatory analysis of 3D kinematics of the lower limbs outside of a gait laboratory and in real life conditions. To our knowledge this is a new concept in the analysis of ankle arthropathy and its treatments. Therefore, there is a potential to address specific questions like the difficult comparison of the benefits of ankle arthroplasty versus arthrodesis. The encouraging results of this pilot study offer the perspective to analyze the consequences of ankle arthropathy and its treatments on the biomechanics of the lower limbs ambulatory, in vivo and in daily life conditions.
Resumo:
This Technical Report presents a tentative protocol used to assess the viability of powersupply systems. The viability of power-supply systems can be assessed by looking at the production factors (e.g. paid labor, power capacity, fossil-fuels) – needed for the system to operate and maintain itself – in relation to the internal constraints set by the energetic metabolism of societies. In fact, by using this protocol it becomes possible to link assessments of technical coefficients performed at the level of the power-supply systems with assessments of benchmark values performed at the societal level throughout the relevant different sectors. In particular, the example provided here in the case of France for the year 2009 makes it possible to see that in fact nuclear energy is not viable in terms of labor requirements (both direct and indirect inputs) as well as in terms of requirements of power capacity, especially when including reprocessing operations.
Resumo:
X-ray is a technology that is used for numerous applications in the medical field. The process of X-ray projection gives a 2-dimension (2D) grey-level texture from a 3- dimension (3D) object. Until now no clear demonstration or correlation has positioned the 2D texture analysis as a valid indirect evaluation of the 3D microarchitecture. TBS is a new texture parameter based on the measure of the experimental variogram. TBS evaluates the variation between 2D image grey-levels. The aim of this study was to evaluate existing correlations between 3D bone microarchitecture parameters - evaluated from μCT reconstructions - and the TBS value, calculated on 2D projected images. 30 dried human cadaveric vertebrae were acquired on a micro-scanner (eXplorer Locus, GE) at isotropic resolution of 93 μm. 3D vertebral body models were used. The following 3D microarchitecture parameters were used: Bone volume fraction (BV/TV), Trabecular thickness (TbTh), trabecular space (TbSp), trabecular number (TbN) and connectivity density (ConnD). 3D/2D projections has been done by taking into account the Beer-Lambert Law at X-ray energy of 50, 100, 150 KeV. TBS was assessed on 2D projected images. Correlations between TBS and the 3D microarchitecture parameters were evaluated using a linear regression analysis. Paired T-test is used to assess the X-ray energy effects on TBS. Multiple linear regressions (backward) were used to evaluate relationships between TBS and 3D microarchitecture parameters using a bootstrap process. BV/TV of the sample ranged from 18.5 to 37.6% with an average value at 28.8%. Correlations' analysis showedthat TBSwere strongly correlatedwith ConnD(0.856≤r≤0.862; p<0.001),with TbN (0.805≤r≤0.810; p<0.001) and negatively with TbSp (−0.714≤r≤−0.726; p<0.001), regardless X-ray energy. Results show that lower TBS values are related to "degraded" microarchitecture, with low ConnD, low TbN and a high TbSp. The opposite is also true. X-ray energy has no effect onTBS neither on the correlations betweenTBS and the 3Dmicroarchitecture parameters. In this study, we demonstrated that TBS was significantly correlated with 3D microarchitecture parameters ConnD and TbN, and negatively with TbSp, no matter what X-ray energy has been used. This article is part of a Special Issue entitled ECTS 2011. Disclosure of interest: None declared.
Resumo:
A fully-automated 3D image analysis method is proposed to segment lung nodules in HRCT. A specific gray-level mathematical morphology operator, the SMDC-connection cost, acting in the 3D space of the thorax volume is defined in order to discriminate lung nodules from other dense (vascular) structures. Applied to clinical data concerning patients with pulmonary carcinoma, the proposed method detects isolated, juxtavascular and peripheral nodules with sizes ranging from 2 to 20 mm diameter. The segmentation accuracy was objectively evaluated on real and simulated nodules. The method showed a sensitivity and a specificity ranging from 85% to 97% and from 90% to 98%, respectively.