956 resultados para 1D and 2D NMR
Resumo:
Nesta tese descreve-se a síntese de compostos multiporfirínicos covalentes bem como a avaliação da potencial utilização destes compostos como quimiossensores de iões metálicos e para a construção de estruturas supramoleculares com fulerenos. No capítulo 1 desta tese é feita uma introdução à química, propriedades e aplicações das porfirinas e sistemas multiporfirínicos. Relativamente aos sistemas multiporfirínicos é feita uma revisão bibliográfica acerca das estratégias de síntese e abordagem geral à química supramolecular de sistemas porfirina-fulereno. No capítulo 2 são apresentados os resultados referentes à síntese e caracterização dos vários sistemas multiporfirínicos desenvolvidos neste trabalho. De um modo geral, a síntese desses compostos envolveu reações de substituição aromática nucleofílica. Para esse efeito foi necessário preparar porfirinas de partida contendo grupos nucleofílicos nas posições meso (-C6H4OH e -C6H4NH2). Os sistemas multiporfirínicos foram obtidos por reações entre as porfirinas de partida e hexafluorobenzeno ou 5,10,15,20tetraquis(pentafluorofenil)porfirina. Descreve-se também a síntese de uma díade porfirina-C60 e de uma pentíade contendo quatro unidades de porfirina e uma de C60, envolvendo reações de cicloadição 1,3-dipolar e de substituição aromática nucleofílica. Os estudos efetuados ao nível da aplicação de alguns dos novos sistemas multiporfirínicos sintetizados e de um dos seus precursores, a 5-[4(pentafluorofeniloxi)fenil]-10,15,20-trifenilporfirina, como sensores de iões metálicos encontram-se descritos no capítulo 3. Neste capítulo, a título introdutório, é feita uma breve abordagem aos quimiossensores colorimétricos e de fluorescência, apresentando também alguns exemplos de porfirinas como quimiossensores de iões metálicos já descritos na literatura científica. A caracterização fotofísica dos compostos em estudo também é descrita neste capítulo. Os compostos estudados mostraram capacidade de interagir com vários iões metálicos, verificando-se um aumento da seletividade para o ião Hg2+ com o aumento do número de unidades porfirínicas constituintes dos sistemas multiporfirínicos. Os resultados referentes aos estudos de complexação de alguns dos sistemas multiporfirínicos sintetizados com fulerenos encontram-se descritos no capítulo 4. Neste capítulo descreve-se também a caracterização fotofísica dos compostos em estudo. Os estudos realizados com os sistemas multiporfirínicos mostraram uma fraca interação com os fulerenos C60 e C70. No entanto, os valores das constantes de afinidade obtidos com 1-metil-2-(4piridil)[60]fulero[c]pirrolidina mostraram que os sistemas multiporfirínicos apresentam capacidade para formar complexos com este derivado de C60 por coordenação axial e por interações π-π. No capítulo 5 é discutido o trabalho que envolveu o desenvolvimento de novos métodos na síntese de derivados tetrapirrólicos do tipo pirrolo[3,4-b]porfirinas contendo um grupo NH livre no anel exocíclico. A estratégia de síntese requereu a preparação de uma clorina fundida com um anel pirrolina seguida da redução do anel pirrolina. Deste modo obteve-se uma nova clorina fundida com um anel pirrolidina contendo um grupo NH livre. Esta nova clorina foi usada na preparação de uma díade clorina-porfirina por reação de N-arilação com 5,10,15,20-tetraquis(pentafluorofenil)porfirina. A estrutura cristalina da nova díade foi resolvida por difração de raios-X de cristal único. A estrutura dos compostos sintetizados foi estabelecida recorrendo a diversas técnicas espectroscópicas nomeadamente ressonância magnética nuclear (RMN de 1H, 13C e 19F), espectrometria de massa e espectrofotometria de UVvis. No último capítulo desta tese descrevem-se, pormenorizadamente, todas as experiências efetuadas, incluindo os métodos de síntese, purificação e caracterização estrutural dos diversos compostos sintetizados bem como as medições espectrofotométricas e espectrofluorimétricas.
Resumo:
This work describes preliminary results of a two-modality imaging system aimed at the early detection of breast cancer. The first technique is based on compounding conventional echographic images taken at regular angular intervals around the imaged breast. The other modality obtains tomographic images of propagation velocity using the same circular geometry. For this study, a low-cost prototype has been built. It is based on a pair of opposed 128-element, 3.2 MHz array transducers that are mechanically moved around tissue mimicking phantoms. Compounded images around 360 degrees provide improved resolution, clutter reduction, artifact suppression and reinforce the visualization of internal structures. However, refraction at the skin interface must be corrected for an accurate image compounding process. This is achieved by estimation of the interface geometry followed by computing the internal ray paths. On the other hand, sound velocity tomographic images from time of flight projections have been also obtained. Two reconstruction methods, Filtered Back Projection (FBP) and 2D Ordered Subset Expectation Maximization (2D OSEM), were used as a first attempt towards tomographic reconstruction. These methods yield useable images in short computational times that can be considered as initial estimates in subsequent more complex methods of ultrasound image reconstruction. These images may be effective to differentiate malignant and benign masses and are very promising for breast cancer screening. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
A new titanium catalyst easily synthesized from ethylmaltol bidentate chelator ligand was studied in homogeneous and heterogeneous ethylene polymerization. The dichlorobis(3-hydroxy-2-ethyl-4-pyrone)titanium(IV) complex was characterized by 1H and 13C NMR (nuclear magnetic resonance), UV-Vis and elemental analysis. Theoretical study by density functional theory (DFT) showed that the complex chlorines exhibit cis configuration, which is important for the activity in olefin polymerization. The complex was supported by two methods, direct impregnation or methylaluminoxane (MAO) pre-treatment, in five mesoporous supports: MCM-41 (micro and nano), SBA-15 and also the corresponding modified Al species. All the catalytic systems were active in ethylene polymerization and the catalytic activity was strongly influenced by the method of immobilization of the catalyst and the type of support.
Resumo:
In this work, we reported the synthesis and characterization of two [2]rotaxanes endowed with a central ammonium group and two triazolium recognition stations on either side, acting as complexation sites for a dibenzo-24-crown-8 ether macrocycle. These mechanically interlocked architectures were obtained through the interlocking of a functionalized achiral macrocycle with Cs symmetry (where the symmetry element is a mirror plane corresponding to plane of the ring) and a C∞v symmetric axle (where a mirror plane and a C∞ principal axis are aligned along the axle length). We took advantage of the reversible acid/base triggered molecular shuttling of the ring between two lateral triazolium units to switch the rotaxanes between prochiral and mechanically planar chiral forms, which exists as two rapidly-interconverting co-conformers. We exploited the reactivity of the central amino group to attach an optically pure chiral substituent, with the goal of demonstrating the enantiomeric nature of the co-conformers and to obtain a non-zero diastereomeric excess in the resulting diastereomeric products through a dynamic kinetic resolution. To this end, two enantiopure reagents were chosen that could perform clean and fast reaction with amines: a sulfonyl chloride and an acyl chloride. Only the acyl chloride successfully produced an amide in high yield with the deprotonated rotaxane. The group added to the central amine station acted as a stopper against the shuttling of the macrocycle along the axis, thus preventing the fast interconversion of the two mechanically planar enantiomers. We analysed the results through static and dynamic NMR spectroscopic techniques by varying temperature and solvent used. Indeed, the presence of diastereomers was recorded alongside the configurational isomers resulting from the slow rotation of the CN-CO bond of the amide moiety, thus paving the way for a dynamic kinetic resolution.
Resumo:
Two polymeric azido bridged complexes [Ni2L2(N-3)(3)](n)(ClO4). (1) and [Cu(bpdS)(2)(N-3)],(ClO4),(H2O)(2.5n) (2) [L = Schiff base, obtained from the condensation of pyridine-2-aldehyde with N,N,2,2-tetramethyl-1,3-propanediamine; bpds = 4,4'-bipyridyl disulfide] have been synthesized and their crystal structures have been determined. Complex 1, C26H42ClN15Ni2O4, crystallizes in a triclinic system, space group P1 with a 8.089(13), b = 9.392(14), c = 12.267(18) angstrom, a = 107.28(l), b 95.95(1), gamma = 96.92(1)degrees and Z = 2; complex 2, C20H21ClCuN7O6.5S4, crystallizes in an orthorhombic system, space group Pnna with a = 10.839(14), b = 13.208(17), c = 19.75(2) angstrom and Z = 4. The crystal structure of I consists of 1D polymers of nickel(L) units, alternatively connected by single and double bridging mu-(1,3-N-3) ligand with isolated perchlorate anions. Variable temperature magnetic susceptibility data of the complex have been measured and the fitting,of magnetic data was carried out applying the Borris-Almenar formula for such types of alternating one-dimensional S = 1 systems, based on the Hamiltonian H = -J Sigma(S2iS2i-1 + aS(2i)S(2i+1)). The best-fit parameters obtained are J = -106.7 +/- 2 cm(-1); a = 0.82 +/- 0.02; g = 2.21 +/- 0.02. Complex 2 is a 2D network of 4,4 topology with the nodes occupied by the Cu-II ions, and the edges formed by single azide and double bpds connectors. The perchlorate anions are located between pairs of bpds. The magnetic data have been fitted considering the complex as a pseudo-one-dimensional system, with all copper((II)) atoms linked by [mu(1,3-azido) bridging ligands at axial positions (long Cu...N-3 distances) since the coupling through long bpds is almost nil. The best-fit parameters obtained with this model are J = -1.21 +/- 0.2 cm(-1), g 2.14 +/- 0.02. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).
Resumo:
In this paper, a new cruciform donor–acceptor molecule 2,2'-((5,5'-(3,7-dicyano-2,6-bis(dihexylamino)benzo[1,2-b:4,5-b']difuran-4,8-diyl)bis(thiophene-5,2-diyl))bis (methanylylidene))dimalononitrile (BDFTM) is reported. The compound exhibits both remarkable solid-state red emission and p-type semiconducting behavior. The dual functions of BDFTM are ascribed to its unique crystal structure, in which there are no intermolecular face-to-face π–π interactions, but the molecules are associated by intermolecular CN…π and H-bonding interactions. Firstly, BDFTM exhibits aggregation-induced emission; that is, in solution, it is almost non-emissive but becomes significantly fluorescent after aggregation. The emission quantum yield and average lifetime are measured to be 0.16 and 2.02 ns, respectively. Crystalline microrods and microplates of BDFTM show typical optical waveguiding behaviors with a rather low optical loss coefficient. Moreover, microplates of BDFTM can function as planar optical microcavities which can confine the emitted photons by the reflection at the crystal edges. Thin films show an air-stable p-type semiconducting property with a hole mobility up to 0.0015 cm2V−1s−1. Notably, an OFET with a thin film of BDFTM is successfully utilized for highly sensitive and selective detection of H2S gas (down to ppb levels).
Resumo:
Apples can be considered as having a complex system formed by several structures at different organization levels: macroscale (mayor que100 ?m) and microscale (menor que100 ?m). This work implements 2D T1/T2 global and localized relaxometry sequences on whole apples to be able to perform an intensive non-destructive and non-invasive microstructure study. The 2D T1/T2 cross-correlation spectroscopy allows the extraction of quantitative information about the water compartmentation in different subcellular organelles. A clear difference is found as sound apples show neat peaks for water in different subcellular compartments, such as vacuolar, cytoplasmatic and extracellular water, while in watercore-affected tissues such compartments appear merged. Localized relaxometry allows for the predefinition of slices in order to understand the microstructure of a particular region of the fruit, providing information that cannot be derived from global 2D T1/T2 relaxometry.
Resumo:
Apples can be considered as having a complex system formed by several structures at different organization levels: macroscale (>100 μm) and microscale (<100 μm). This work implements 2D T1/T2 global and localized relaxometry sequences on whole apples to be able to perform an intensive non-destructive and non-invasive microstructure study. The 2D T1/T2 cross-correlation spectroscopy allows the extraction of quantitative information about the water compartmentation in different subcellular organelles. A clear difference is found as sound apples show neat peaks for water in different subcellular compartments, such as vacuolar, cytoplasmatic and extracellular water, while in watercore-affected tissues such compartments appear merged. Localized relaxometry allows for the predefinition of slices in order to understand the microstructure of a particular region of the fruit, providing information that cannot be derived from global 2D T1/T2 relaxometry.
Resumo:
This study represents the first application of multi-way calibration by N-PLS and multi-way curve resolution by PARAFAC to 2D diffusion-edited H-1 NMR spectra. The aim of the analysis was to evaluate the potential for quantification of lipoprotein main- and subtractions in human plasma samples. Multi-way N-PLS calibrations relating the methyl and methylene peaks of lipoprotein lipids to concentrations of the four main lipoprotein fractions as well as 11 subfractions were developed with high correlations (R = 0.75-0.98). Furthermore, a PARAFAC model with four chemically meaningful components was calculated from the 2D diffusion-edited spectra of the methylene peak of lipids. Although the four extracted PARAFAC components represent molecules of sizes that correspond to the four main fractions of lipoproteins, the corresponding concentrations of the four PARAFAC components proved not to be correlated to the reference concentrations of these four fractions in the plasma samples as determined by ultracentrifugation. These results indicate that NMR provides complementary information on the classification of lipoprotein fractions compared to ultracentrifugation. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The structures of linear chain Fe(II) spin-crossover compounds of α,β- and α,ω-bis (tetrazol-1-yl)alkane type ligands are described in relation to their magnetic properties. The first threefold interlocked 3-D catenane Fe(II) spin-transition system, [μ-tris(1,4-bis(tetrazol-1-yl)butane-N1,N1′) iron(II)] bis(perchlorate), will be discussed. An analysis is made among the structures and the cooperativity of the spin-crossover behaviour of polynuclear Fe(II) spin-transition materials.
Resumo:
Opposite enantiomers exhibit different NMR properties in the presence of an external common chiral element, and a chiral molecule exhibits different NMR properties in the presence of external enantiomeric chiral elements. Automatic prediction of such differences, and comparison with experimental values, leads to the assignment of the absolute configuration. Here two cases are reported, one using a dataset of 80 chiral secondary alcohols esterified with (R)-MTPA and the corresponding 1H NMR chemical shifts and the other with 94 13C NMR chemical shifts of chiral secondary alcohols in two enantiomeric chiral solvents. For the first application, counterpropagation neural networks were trained to predict the sign of the difference between chemical shifts of opposite stereoisomers. The neural networks were trained to process the chirality code of the alcohol as the input, and to give the NMR property as the output. In the second application, similar neural networks were employed, but the property to predict was the difference of chemical shifts in the two enantiomeric solvents. For independent test sets of 20 objects, 100% correct predictions were obtained in both applications concerning the sign of the chemical shifts differences. Additionally, with the second dataset, the difference of chemical shifts in the two enantiomeric solvents was quantitatively predicted, yielding r2 0.936 for the test set between the predicted and experimental values.
Resumo:
We review methods to estimate the average crystal (grain) size and the crystal (grain) size distribution in solid rocks. Average grain sizes often provide the base for stress estimates or rheological calculations requiring the quantification of grain sizes in a rock's microstructure. The primary data for grain size data are either 1D (i.e. line intercept methods), 2D (area analysis) or 3D (e.g., computed tomography, serial sectioning). These data have been used for different data treatments over the years, whereas several studies assume a certain probability function (e.g., logarithm, square root) to calculate statistical parameters as the mean, median, mode or the skewness of a crystal size distribution. The finally calculated average grain sizes have to be compatible between the different grain size estimation approaches in order to be properly applied, for example, in paleo-piezometers or grain size sensitive flow laws. Such compatibility is tested for different data treatments using one- and two-dimensional measurements. We propose an empirical conversion matrix for different datasets. These conversion factors provide the option to make different datasets compatible with each other, although the primary calculations were obtained in different ways. In order to present an average grain size, we propose to use the area-weighted and volume-weighted mean in the case of unimodal grain size distributions, respectively, for 2D and 3D measurements. The shape of the crystal size distribution is important for studies of nucleation and growth of minerals. The shape of the crystal size distribution of garnet populations is compared between different 2D and 3D measurements, which are serial sectioning and computed tomography. The comparison of different direct measured 3D data; stereological data and direct presented 20 data show the problems of the quality of the smallest grain sizes and the overestimation of small grain sizes in stereological tools, depending on the type of CSD. (C) 2011 Published by Elsevier Ltd.
Resumo:
We have recently shown that at isotopic steady state (13)C NMR can provide a direct measurement of glycogen concentration changes, but that the turnover of glycogen was not accessible with this protocol. The aim of the present study was to design, implement and apply a novel dual-tracer infusion protocol to simultaneously measure glycogen concentration and turnover. After reaching isotopic steady state for glycogen C1 using [1-(13)C] glucose administration, [1,6-(13)C(2)] glucose was infused such that isotopic steady state was maintained at the C1 position, but the C6 position reflected (13)C label incorporation. To overcome the large chemical shift displacement error between the C1 and C6 resonances of glycogen, we implemented 2D gradient based localization using the Fourier series window approach, in conjunction with time-domain analysis of the resulting FIDs using jMRUI. The glycogen concentration of 5.1 +/- 1.6 mM measured from the C1 position was in excellent agreement with concomitant biochemical determinations. Glycogen turnover measured from the rate of label incorporation into the C6 position of glycogen in the alpha-chloralose anesthetized rat was 0.7 micromol/g/h.
Resumo:
Corteo is a program that implements Monte Carlo (MC) method to simulate ion beam analysis (IBA) spectra of several techniques by following the ions trajectory until a sufficiently large fraction of them reach the detector to generate a spectrum. Hence, it fully accounts for effects such as multiple scattering (MS). Here, a version of Corteo is presented where the target can be a 2D or 3D image. This image can be derived from micrographs where the different compounds are identified, therefore bringing extra information into the solution of an IBA spectrum, and potentially significantly constraining the solution. The image intrinsically includes many details such as the actual surface or interfacial roughness, or actual nanostructures shape and distribution. This can for example lead to the unambiguous identification of structures stoichiometry in a layer, or at least to better constraints on their composition. Because MC computes in details the trajectory of the ions, it simulates accurately many of its aspects such as ions coming back into the target after leaving it (re-entry), as well as going through a variety of nanostructures shapes and orientations. We show how, for example, as the ions angle of incidence becomes shallower than the inclination distribution of a rough surface, this process tends to make the effective roughness smaller in a comparable 1D simulation (i.e. narrower thickness distribution in a comparable slab simulation). Also, in ordered nanostructures, target re-entry can lead to replications of a peak in a spectrum. In addition, bitmap description of the target can be used to simulate depth profiles such as those resulting from ion implantation, diffusion, and intermixing. Other improvements to Corteo include the possibility to interpolate the cross-section in angle-energy tables, and the generation of energy-depth maps.
Resumo:
Reaction of Cu(1,2-phenylenediamine)(2)(ClO4)(2) with neat RR'=O (R = methyl and/or ethyl) (lives Cu(2,2-dialkyl-2H-benzimidazole)ClO4. demetallation of which by the action of aqueous ammonia yields Pure 2,2-dialkyl-2H-benzimidazoles. These are characterised by NMR. hi the X-ray crystal Structure, Ag(2,2-methyl-2H-benzimi-dazolc)NO3 is Found to be a spiral 1D coordination polymer where the 2H-benzimidazole acts as an N,N bridge between two Ag(I) centus. Although 2H-benzimidazoles are very unstable in the free state, they are quite stable in their Cu(I)(1) and Ag(I) complexes. The 1,2-tautomerisation in imidazole and benzimidazole have been Studied by means of transition state calculations at B3LYP/6-3 11 +G(2d,p)* level.