904 resultados para 100602 Input Output and Data Devices


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a technique for the rapid and reliable evaluation of linear-functional output of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N (optimally) selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and (iii) offline/online computational procedures — stratagems that exploit affine parameter dependence to de-couple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output and associated error bound — depends only on N (typically small) and the parametric complexity of the problem. The method is thus ideally suited to the many-query and real-time contexts. In this paper, based on the technique we develop a robust inverse computational method for very fast solution of inverse problems characterized by parametrized partial differential equations. The essential ideas are in three-fold: first, we apply the technique to the forward problem for the rapid certified evaluation of PDE input-output relations and associated rigorous error bounds; second, we incorporate the reduced-basis approximation and error bounds into the inverse problem formulation; and third, rather than regularize the goodness-of-fit objective, we may instead identify all (or almost all, in the probabilistic sense) system configurations consistent with the available experimental data — well-posedness is reflected in a bounded "possibility region" that furthermore shrinks as the experimental error is decreased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Title: Data-Driven Text Generation using Neural Networks Speaker: Pavlos Vougiouklis, University of Southampton Abstract: Recent work on neural networks shows their great potential at tackling a wide variety of Natural Language Processing (NLP) tasks. This talk will focus on the Natural Language Generation (NLG) problem and, more specifically, on the extend to which neural network language models could be employed for context-sensitive and data-driven text generation. In addition, a neural network architecture for response generation in social media along with the training methods that enable it to capture contextual information and effectively participate in public conversations will be discussed. Speaker Bio: Pavlos Vougiouklis obtained his 5-year Diploma in Electrical and Computer Engineering from the Aristotle University of Thessaloniki in 2013. He was awarded an MSc degree in Software Engineering from the University of Southampton in 2014. In 2015, he joined the Web and Internet Science (WAIS) research group of the University of Southampton and he is currently working towards the acquisition of his PhD degree in the field of Neural Network Approaches for Natural Language Processing. Title: Provenance is Complicated and Boring — Is there a solution? Speaker: Darren Richardson, University of Southampton Abstract: Paper trails, auditing, and accountability — arguably not the sexiest terms in computer science. But then you discover that you've possibly been eating horse-meat, and the importance of provenance becomes almost palpable. Having accepted that we should be creating provenance-enabled systems, the challenge of then communicating that provenance to casual users is not trivial: users should not have to have a detailed working knowledge of your system, and they certainly shouldn't be expected to understand the data model. So how, then, do you give users an insight into the provenance, without having to build a bespoke system for each and every different provenance installation? Speaker Bio: Darren is a final year Computer Science PhD student. He completed his undergraduate degree in Electronic Engineering at Southampton in 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durante este trabajo se analizarán los impactos económicos, sociales y ambientales que generaría el desarrollo de una Plataforma Logística Multimodal en Puerto Asís, Putumayo, en la región amazónica comprendida por Colombia, Brasil y Ecuador, como opción de salida y entrada de mercancías. Esto con el fin de establecer cuál es la ruta más óptima para el transporte de mercancías hacia el continente asiático. Este proyecto surge como una iniciativa en la constitución de un eje de transporte para la interconexión de los puertos de la región amazónica. Consiste en el establecimiento de infraestructura para vías terrestres y marítimas que agilicen el transporte y reduzcan los altos costos a los que se enfrentan el comercio de la región. Para justificar la viabilidad de la realización este proyecto, es necesario evaluar diferentes impactos que producirían en diferentes ámbitos como los económicos, ambientales y sociales. Para la búsqueda de los impactos se establecen los perfiles actuales de los países vinculados al proyecto de la Plataforma Logística Multimodal en Puerto Asís, Putumayo. Esto con el fin de conocer sus respectivas condiciones actuales y hallar en qué medida se verán alteradas. Posteriormente, se expondrá las circunstancias de infraestructura de esta zona, demostrando los desafíos que exige el desarrollo de este tipo de proyectos en la región amazónica con la intención final de mejorar la infraestructura no solo de este sector sino del país, volviéndolo más competitivo a nivel global. Finalmente se evaluaran los efectos que la construcción de la plataforma generaría justificando su desarrollo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper gives an overview of the project Changing Coastlines: data assimilation for morphodynamic prediction and predictability. This project is investigating whether data assimilation could be used to improve coastal morphodynamic modeling. The concept of data assimilation is described, and the benefits that data assimilation could bring to coastal morphodynamic modeling are discussed. Application of data assimilation in a simple 1D morphodynamic model is presented. This shows that data assimilation can be used to improve the current state of the model bathymetry, and to tune the model parameter. We now intend to implement these ideas in a 2D morphodynamic model, for two study sites. The logistics of this are considered, including model design and implementation, and data requirement issues. We envisage that this work could provide a means for maintaining up-to-date information on coastal bathymetry, without the need for costly survey campaigns. This would be useful for a range of coastal management issues, including coastal flood forecasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GODIVA2 is a dynamic website that provides visual access to several terabytes of physically distributed, four-dimensional environmental data. It allows users to explore large datasets interactively without the need to install new software or download and understand complex data. Through the use of open international standards, GODIVA2 maintains a high level of interoperability with third-party systems, allowing diverse datasets to be mutually compared. Scientists can use the system to search for features in large datasets and to diagnose the output from numerical simulations and data processing algorithms. Data providers around Europe have adopted GODIVA2 as an INSPIRE-compliant dynamic quick-view system for providing visual access to their data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mersey Basin has been significantly polluted for over 200 years. However, there is a lack of quantitative historical water quality data as effective water quality monitoring and data recording only began 30-40 years ago. This paper assesses water pollution in the Mersey Basin using a Water Pollution Index constructed from social and economic data. Methodology, output and the difficulties involved with validation are discussed. With the limited data input available the index approximately reproduces historical water quality. The paper illustrates how historical studies of environmental water quality may provide valuable identification of factors responsible for pollution and a marker set for contemporary and future water quality issues in the context of the past. This is an issue of growing research interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sustainability of cereal/legume intercropping was assessed by monitoring trends in grain yield, soil organic C (SOC) and soil extractable P (Olsen method) measured over 13 years at a long-term field trial on a P-deficient soil in semi-arid Kenya. Goat manure was applied annually for 13 years at 0, 5 and 10 t ha(-1) and trends in grain yield were not identifiable because of season-to-season variations. SOC and Olsen P increased for the first seven years of manure application and then remained constant. The residual effect of manure applied for four years only lasted another seven to eight years when assessed by yield, SOC and Olsen P. Mineral fertilizers provided the same annual rates of N and P as in 5 t ha(-1) manure and initially ,gave the same yield as manure, declining after nine years to about 80%. Therefore, manure applications could be made intermittently and nutrient requirements topped-up with fertilizers. Grain yields for sorghum with continuous manure were described well by correlations with rainfall and manure input only, if data were excluded for seasons with over 500 mm rainfall. A comprehensive simulation model should correctly describe crop losses caused by excess water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Technology involving genetic modification of crops has the potential to make a contribution to rural poverty reduction in many developing countries. Thus far, insecticide-producing 'Bt' varieties of cotton have been the main GM crops under cultivation in developing nations. Several studies have evaluated the farm-level performance of Bt varieties in comparison to conventional ones by estimating production technology, and have mostly found Bt technology to be very successful in raising output and/or reducing insecticide input. However, the production risk properties of this technology have not been studied, although they are likely to be important to risk-averse smallholders. This study investigates the output risk aspects of Bt technology using a three-year farm-level dataset on smallholder cotton production in Makhathini flats, Kwa-Zulu Natal, South Africa. Stochastic dominance and stochastic production function estimation methods are used to examine the risk properties of the two technologies. Results indicate that Bt technology increases output risk by being most effective when crop growth conditions are good, but being less effective when conditions are less favourable. However, in spite of its risk increasing effect, the mean output performance of Bt cotton is good enough to make it preferable to conventional technology even for risk-averse smallholders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subsidised energy prices in pre-transition Hungary had led to excessive energy intensity in the agricultural sector. Transition has resulted in steep input price increases. In this study, Allen and Morishima elasticities of substitution are estimated to study the effects of these price changes on energy use, chemical input use, capital formation and employment. Panel data methods, Generalised Method of Moments (GMM) and instrument exogeneity tests are used to specify and estimate technology and substitution elasticities. Results indicate that indirect price policy may be effective in controlling energy consumption. The sustained increases in energy and chemical input prices have worked together to restrict energy and chemical input use, and the substitutability between energy, capital and labour has prevented the capital shrinkage and agricultural unemployment situations from being worse. The Hungarian push towards lower energy intensity may be best pursued through sustained energy price increases rather than capital subsidies. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Event-related functional magnetic resonance imaging (efMRI) has emerged as a powerful technique for detecting brains' responses to presented stimuli. A primary goal in efMRI data analysis is to estimate the Hemodynamic Response Function (HRF) and to locate activated regions in human brains when specific tasks are performed. This paper develops new methodologies that are important improvements not only to parametric but also to nonparametric estimation and hypothesis testing of the HRF. First, an effective and computationally fast scheme for estimating the error covariance matrix for efMRI is proposed. Second, methodologies for estimation and hypothesis testing of the HRF are developed. Simulations support the effectiveness of our proposed methods. When applied to an efMRI dataset from an emotional control study, our method reveals more meaningful findings than the popular methods offered by AFNI and FSL. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rats with fornix transection, or with cytotoxic retrohippocampal lesions that removed entorhinal cortex plus ventral subiculum, performed a task that permits incidental learning about either allocentric (Allo) or egocentric (Ego) spatial cues without the need to navigate by them. Rats learned eight visual discriminations among computer-displayed scenes in a Y-maze, using the constant-negative paradigm. Every discrimination problem included two familiar scenes (constants) and many less familiar scenes (variables). On each trial, the rats chose between a constant and a variable scene, with the choice of the variable rewarded. In six problems, the two constant scenes had correlated spatial properties, either Alto (each constant appeared always in the same maze arm) or Ego (each constant always appeared in a fixed direction from the start arm) or both (Allo + Ego). In two No-Cue (NC) problems, the two constants appeared in randomly determined arms and directions. Intact rats learn problems with an added Allo or Ego cue faster than NC problems; this facilitation provides indirect evidence that they learn the associations between scenes and spatial cues, even though that is not required for problem solution. Fornix and retrohippocampal-lesioned groups learned NC problems at a similar rate to sham-operated controls and showed as much facilitation of learning by added spatial cues as did the controls; therefore, both lesion groups must have encoded the spatial cues and have incidentally learned their associations with particular constant scenes. Similar facilitation was seen in subgroups that had short or long prior experience with the apparatus and task. Therefore, neither major hippocampal input-output system is crucial for learning about allocentric or egocentric cues in this paradigm, which does not require rats to control their choices or navigation directly by spatial cues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper formally derives a new path-based neural branch prediction algorithm (FPP) into blocks of size two for a lower hardware solution while maintaining similar input-output characteristic to the algorithm. The blocked solution, here referred to as B2P algorithm, is obtained using graph theory and retiming methods. Verification approaches were exercised to show that prediction performances obtained from the FPP and B2P algorithms differ within one mis-prediction per thousand instructions using a known framework for branch prediction evaluation. For a chosen FPGA device, circuits generated from the B2P algorithm showed average area savings of over 25% against circuits for the FPP algorithm with similar time performances thus making the proposed blocked predictor superior from a practical viewpoint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present an on-line estimation algorithm for an uncertain time delay in a continuous system based on the observational input-output data, subject to observational noise. The first order Pade approximation is used to approximate the time delay. At each time step, the algorithm combines the well known Kalman filter algorithm and the recursive instrumental variable least squares (RIVLS) algorithm in cascade form. The instrumental variable least squares algorithm is used in order to achieve the consistency of the delay parameter estimate, since an error-in-the-variable model is involved. An illustrative example is utilized to demonstrate the efficacy of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a computer program requires legitimate access to confidential data, the question arises whether such a program may illegally reveal sensitive information. This paper proposes a policy model to specify what information flow is permitted in a computational system. The security definition, which is based on a general notion of information lattices, allows various representations of information to be used in the enforcement of secure information flow in deterministic or nondeterministic systems. A flexible semantics-based analysis technique is presented, which uses the input-output relational model induced by an attacker's observational power, to compute the information released by the computational system. An illustrative attacker model demonstrates the use of the technique to develop a termination-sensitive analysis. The technique allows the development of various information flow analyses, parametrised by the attacker's observational power, which can be used to enforce what declassification policies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge-elicitation is a common technique used to produce rules about the operation of a plant from the knowledge that is available from human expertise. Similarly, data-mining is becoming a popular technique to extract rules from the data available from the operation of a plant. In the work reported here knowledge was required to enable the supervisory control of an aluminium hot strip mill by the determination of mill set-points. A method was developed to fuse knowledge-elicitation and data-mining to incorporate the best aspects of each technique, whilst avoiding known problems. Utilisation of the knowledge was through an expert system, which determined schedules of set-points and provided information to human operators. The results show that the method proposed in this paper was effective in producing rules for the on-line control of a complex industrial process.