949 resultados para 0-2 cm


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Grazing animal excrement plays an important role in nutrient cycling and redistribution in grazing ecosystems, due to grazing in large areas and return in small areas. To elucidate the changes to the soil and pasture caused by sheep urine, fresh dung, and compost patches, a short- term field experiment using artificially placed pats was set up in the autumn of 2003 in the Inner Mongolian steppe. Urine application significantly increased soil pH during the first 32 days in soil layers at depths of both 0 - 5 cm and 5 - 15 cm. Rapid hydrolysis of urea gave large amounts of urine- nitrogen ( N) as ammonium ( NH4+) in soil extracts and was followed by apparent nitrification from day 2. Higher inorganic N content in the urine- treated soil was found throughout the experiment compared with the control. No significant effects of sheep excrement on soil microbial carbon ( C) and soil microbial N was found, but microbial activities significantly increased compared with the control after application of sheep excrement. Forty- six percent of dung- N and 27% of compost- N were transferred into vegetation after the experiment. The results from this study suggest that large amounts of nutrients have been lost from the returned excrement patches in the degraded grassland of Inner Mongolia, especially from sheep urine- N.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During the growing seasons of 2002 and 2003, biomass productivity and diversity were examined along an altitudinal transect on the south-western slope of Beishan Mountain, Maqin County (33 degrees 43'-35 degrees 16'N, 98 degrees 48'-100 degrees 55'E), Qinghai-Tibetan Plateau. Six altitudes were selected, between 3840 and 4435 m. Soil organic matter, soil available N and P and environmental factors significantly affected plant-species diversity and productivity of the alpine meadows. Aboveground biomass declined significantly with increasing altitude (P < 0.05) and it was positively and linearly related to late summer soil-surface temperature. Belowground biomass (0 - 10-cm depth) was significantly greater at the lowest and highest altitudes than at intermediate locations, associated with water and nutrient availabilities. At each site, the maximum belowground biomass values occurred at the beginning and the end of the growing seasons (P < 0.05). Soil organic matter content, and available N and P were negatively and closely related to plant diversity (species richness, Shannon-Wiener diversity index, and Pielou evenness index).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Large-scale grassland rehabilitation has been carried out on the severely degraded lands of the Tibetan plateau. The grasslands created provide a useful model for evaluating the recovery of ecosystem properties. The purposes of this research were: (1) to examine the relative influence of various rehabilitation practices on carbon and nitrogen in plants and soils in early secondary succession; and (2) to evaluate the degree to which severely degraded grassland altered plant and soil properties relative to the non-disturbed native community. The results showed: (1) The aboveground tissue C and N content in the control were 105-97 g m(-2) and 3.356gm(-2), respectively. The aboveground tissue C content in the mixed seed treatment, the single seed treatment, the natural recovery treatment and the severely degraded treatment was 137 per cent, 98 per cent, 49 per cent and 38 per cent, respectively, of that in the control. The corresponding aboveground tissue N content was 109 per cent, 84 per cent, 60 per cent and 47 per cent, respectively, of that in the control. (2) Root C and N content in 0-20 cm depths of the control had an 2 2 average 1606 gm(-2) and 30-36 gm(-2) respectively. Root C and N content in the rehabilitation treatments were in the range of 26-36 per cent and 35-53 per cent, while those in the severely degraded treatment were only 17 per cent and 26 per cent of that in the control. (3) In the control the average soil C and N content at 0-20 cm was 11307 gm(-2) and 846 gm(-2), respectively. Soil C content in the uppermost 20 cm in the seeded treatments, the natural recovery treatment and the severely degraded treatment was 67 per cent, 73 per cent and 57 per cent, respectively, while soil N content in the uppermost 20cm was 72 per cent, 82 per cent and 79 per cent, respectively, of that in the control. The severely degraded land was a major C source. Restoring the severely degraded lands to perennial vegetation was an alternative approach to sequestering C in former degraded systems. N was a limiting factor in seeding grassland. It is necessary for sustainable utilization of seeding grassland to supply extra N fertilizer to the soil or to add legume species into the seed mix. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Relationship between biology and environment is always the theme of ecology. Transect is becoming one of the important methods in studies on relationship between global change and terrestrial ecosystems, especially for analysis of its driving factors. Inner Mongolia Grassland is the most important in China Grassland Transect brought forward by Yu GR. In this study, changes in grassland community biomass along gradients of weather conditions in Inner Mongolia was researched by the method of transect. Methods of regression about biomass were also compared. The transect was set from Eerguna county to Alashan county (38° 07' 35" ~50° 12' 20" N, 101° 55' 25" -120° 20' 46" E) in Inner Mongolia, China. The sample sites were mainly chosen along the gradient of grassland type, meadow steppe-* typical steppe-*desert steppe-*steppification desert-^desert. The study was carried out when grassland community biomass got the peak in August or September, 2003 and 2004. And data of 49 sample sites was gotten, which included biomass, mean annual temperature, annual precipitation, accumulated temperature above zero, annual hours of sunshine and other statistical and descriptive data. The aboveground biomass was harvested, and the belowground biomass was obtained by coring (30 cm deep). Then all the biomass samples were dried within (80 + 5) °C in oven and weighted. The conclusion is as follows: 1) From the northeast to the southwest in Inner Mongolia, along the gradient of grassland type, meadow steppe-*typical steppe-*desert steppe-*steppification desert-* desert, the cover degree of vegetation community reduces. 2) By unitary regression analysis, biomass is negatively correlated with mean annual temperature, s^CTC accumulated temperature, ^10°C accumulated temperature and annual hours of sunshine, among which mean annual temperature is crucial, and positively with mean annual precipitation and mean annual relative humidity, and the correlation coefficient between biomass and mean annual relative humidity is higher. Altitude doesn't act on it evidently. Result of multiple regression analysis indicates that as the primary restrictive factor, precipitation affects biomass through complicated way on large scale, and its impaction is certainly important. Along the gradient of grassland type, total biomass reduces. The proportion of aboveground biomass to total biomass reduces and then increases after desert steppe. The trend of below ground biomass's proportion to total biomass is adverse to that of aboveground biomass. 3) Precipitation is not always the only driving factor along the transect for below-/aboveground biomass ratio of different vegetation type composed by different species, and distribution of temperature and precipitation is more important, which is much different among climatic regions, so that the trend of below-/aboveground biomass ratio along the grassland transect may change much through the circumscription of semiarid region and arid region. 4) Among reproductive allocation of aboveground biomass, only the proportion of stem in total biomass notably correlates to the given parameters. Stem/leaf biomass ratio decreases when longitude and latitude increase, caloric variables decrease, and variables about water increase from desert to meadow steppe. The change trends are good modeled by logarithm or binomial equations. 5) 0'-10 cm belowground biomass highly correlates to environmental parameters, whose proportion to total biomass changes most distinctly and increases along the gradient from the west to the east. The deeper belowground biomass responses to the environmental change on the adverse trend but not so sensitively as the surface layer. Because the change value of 0~10 cm belowground biomass is always more than that of below 10 cm along the gradient, the deference between them is balanced by aboveground biomass's change by the resource allocation equilibrium hypothesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

基于冷原子荧光测定方法对红枫湖沉积物及孔隙水中总汞、甲基汞浓度的时空分布特征及控制因素进行了分析.红枫湖沉积物总汞含量为(0.392±0.070)μg/g,高于世界其它背景区汞浓度,也高于处于同一流域的乌江渡水库和东风水库,表明红枫湖受到了一定程度的汞污染.2个采样点总汞无明显的季节变化,但其剖面分布都有在上层富集的趋势.沉积物甲基汞浓度在春季最高,其余季节则没有明显差异,甲基汞峰值出现在表层0-8 cm以内,与红枫湖沉积物中硫酸盐还原菌活动区域一致.沉积物甲基汞浓度的季节变化和剖面最大峰值分布,主要受氧化还原带的季节性迁移所控制.红枫湖孔隙水中总汞的浓度及在固/液之间的分配系数主要和随季节变化的温度或氧化还原条件有关,与沉积物固相中总汞浓度和分布相关性不大,而孔隙水中甲基汞浓度则和沉积物甲基汞浓度存在着极显著的相关性(r=0.70,p〈0.001).沉积物和孔隙水甲基汞浓度除受到固/液分配系数影响外,主要还受到甲基汞产生过程控制.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

在地球环境的界面及其附近,发生着重要的物理、化学和生物反应,进行着频繁的物质交换和输送。研究和认识环境界面的地球化学过程对揭示环境演化、评价环境净化、认识成矿机理均具重要的科学意义。Fe、Mn是地表水环境中两个丰度最大的微量营养元素,也是典型的氧化还原敏感性元素,因其氧化物的吸附特性而对其它微量元素的地球化学行为有着显著的控制作用。因此,Fe、Mn地球化学的研究历来是水环境领域中令人瞩目的一个焦点。地表水环境中Fe、Mn的研究始于海底锰结核的发现及其成因问题的探讨,而Fe、Mn在湖泊研究中受到重视则始于湖泊富营养化问题的出现。二次大战使湖泊Fe、Mn的研究一度中断,直到七十年代因水资源短缺和水环境污染问题的出现才使这一研究重新受到重视,并于近十年得到迅速发展在采样技术、分析方法、Fe、Mn的形态、氧化还原作用、早期成岩作用以及地球化学循环机理的研究上取得了一系列重要的进展。其中以英国Davison的工作最引人注目。一般认为,Fe、Mn在湖泊中的行为受氧化还原边界层的控制。但是,由于研究方法的局限,缺乏将湖水和沉积物作为一个整体的系统研究。尤其是未能对沉积物-水界面及其附近Fe、Mn的行为开展细致的工作,因此在Fe、Mn循环机理的认识上尚存许多疑点。有鉴于此,本项研究着重探讨沉积物-水界面及其附近Fe、Mn的地球化学行为和特征。利用自制的湖泊沉积物和孔隙水取样装置,分别于春秋两季在红枫湖按垂直剖面采集湖水、界面水、孔隙水和沉积物样。采用滤膜技术作湖水、界面水和孔隙水Fe、Mn的形态分析,并作沉积物Fe、Fe~(3+)、Fe~(2+)、Mn、S和孔隙水P、HCO_(3~-)、SO_4~(2-)、NO_(3~-)等项目的分析,完成湖水、界面水的水化学全分析和沉积物的X-射线衍射分析。从而获得以下结果和认识:1.形态。湖水中Fe、Mn均呈微粒态;界面水中Fe呈微粒态,Mn则以微粒态为主,尚有部分离子态;孔隙水中Fe以离子态为主,存在部分胶体态,Mn则以离子态存在。2.特征剖面。春秋季湖水中距沉积物-水界面5m以上,Fe、Mn分布均一,5m以下,Fe、Mn均向界面递增10倍左右;界面水中,Fe、Mn继续向界面递增,但Fe在距界面10cm左右向界面略有递减,同时,在距界面20cm高度Fe的溶解态出现峰值分布,而Mn的溶解态则向界面递增;孔隙水中Fe、Mn均呈峰值分布,并均于12cm深度以下趋于稳定,其中Mn峰位于3cm深度,Fe峰则位下去8cm深度,Fe在10cm深度还存在一谷值分布;沉积物中Fe于7cm深度含量略呈下降趋势,Mn则在界面出现高值,并于0.5cm深度含理突降。3.界面通量。Fe在界面的沉降通量为10.9mg.cm~(-2)a~(-1),扩散通量为-0.24mg.cm~(-2)a~(-1),净重通量则为10.7mg.cm~(-2)a~(-1),扩散量只有沉降通量的2%;Mn在界面的沉降通量为0.203mg.cm~(-2)a~(-1),扩散通量为-0.062mg.cm~(-2)a~(-1),净通量则为0.141mg.cm~(-2)a~(-1),扩散通量占沉降通量的30%。Fe、Mn在界面的平流通量均可忽略不计。4.氧化还原作用。Fe、Mn在沉积物中按氧化电位的高低先后充当有机质分解的主要氧化剂,发生还原溶解,然后经扩散作用重新进入湖水中,并在氧化过程的作用下于界面附近形成微粒态Fe、Mn的富集。5.平衡矿物。沉积物孔隙水中Fe(II)的平衡矿物在8-12cm深度范围内为单硫铁矿(FeS)和黄铁矿(FeS_2),12cm深度以下为菱铁矿(FeCO_3);Mn(II)的平衡矿物则为菱锰矿(MnCO_3)。6.界面循环机理。在湖泊中Fe、Mn循环均受沉积物-水界面的控制围绕界面进行,循环过程由还原、扩散、氧化和沉降四个环节组成,其中Mn循环就在界面附近,而Fe循环则深入沉积物内部。Mn的界面循环相当激烈,Fe则较为缓和。Fe、Mn界面循环的结果使界面附近的湖水和沉积物中出现Fe、Mn的富集,其中Fe的富集程度 相对较小,Mn则非常显著。7.环境效应。Mn的界面循环可能导致~(210)Po的沉积后再迁移,而~(210)Pb的沉积后再迁移则可能与Fe的界面循环有关;Fe、Mn界面循环所形成的富集层对湖泊水库的水质构成严重的潜在威胁;根据Fe、Mn的还原优势作用带可以确定湖泊沉积物的氧化还原环境。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A perovskite-type oxide of Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCFO) with mixed electronic and oxygen ionic conductivity at high temperatures was used as an oxygen-permeable membrane. A tubular membrane of BSCFO made by extrusion method has been used in the membrane reactor to exclusively transport oxygen for the partial oxidation of ethane (POE) to syngas with catalyst of LiLaNiO/gamma-Al2O3 at temperatures of 800-900 degreesC. After only 30 min POE reaction in the membrane reactor, the oxygen permeation flux reached at 8.2 ml cm(-2) min(-1). After that, the oxygen permeation flux increased slowly and it took 12 h to reach at 11.0 ml cm(-2) min(-1). SEM and EDS analysis showed that Sr and Ba segregations occurred on the used membrane surface exposed to air while Co slightly enriched on the membrane surface exposed to ethane. The oxygen permeation flux increased with increasing of concentration of C2H6, which was attributed to increasing of the driving force resulting from the more reducing conditions produced with an increase of concentration of C2H6 in the feed gas. The tubular membrane reactor was successfully operated for POE reaction at 875 degreesC for more than 100 h without failure, with ethane conversion of similar to 100%, CO selectivity of >91% and oxygen permeation fluxes of 10-11 ml cm(-2) min(-1). (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The photodissociation of CH2BrCH2Cl at 266 nm has been investigated on the universal crossed molecular beam machine. The primary dissociation step leads exclusively to the formation of CH2CH2Cl radicals and Br atoms in the electronic ground state as well as in the spin-orbit excited state, with a branching ratio 2 +/- 1:8 +/- 1. Photofragment total c.m. translational energy distribution P(E-t) has been obtained and about 64% of the available energy is partitioned into translational energy for Br channel and about 28.5% of the available energy is partitioned into translational energy for Br* channel. The anisotropy parameters are determined to be beta(Br*) = 0.8 +/- 0.2 and beta(Br) = -0.6 +/- 0.2, respectively. Some CH2CH2Cl radicals with large internal excitation (corresponding to formation of ground state Br channel) may undergo secondary dissociation to form CH2CH2 +/- Cl. The experimental results are discussed in terms of a model that involves the initial excitation of two repulsive electronic states: one from an parallel transition to the (3)Q(0) state, and the other from a perpendicular transition to the (3)Q(1), (1)Q states. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lodos de esgoto possuem alto teor de carbono orgânico, porém, há um expressivo consumo de matéria orgânica logo após sua aplicação no solo, até que seja alcançado novo equilíbrio da relação C/N. Neste trabalho, apresentam- se resultados referentes à decomposição da fração orgânica de dois lodos de esgoto anaeróbios, provenientes das Estações de Tratamento de Esgoto de Franca/SP (esgoto doméstico) e de Barueri/SP (esgoto urbanoindustrial). Os tratamentos estudados foram de 1, 2, 4 e 8 vezes a aplicação da dose recomendada, com base no teor de N, de dois lodos de esgoto, as quais foram equivalentes à aplicação, numa camada de 0-20 cm de solo, de 3, 6, 12 e 24 Mg ha-1 (Franca) e 8, 16, 32 e 64 Mg ha-1 (Barueri). Avaliou-se o efeito dos tratamentos sobre a emissão de carbono na forma de CO2, em câmaras sem circulação forçada de ar, após 57 dias de incubação de misturas de amostras de um Latossolo Vermelho distroférrico com as doses dos lodos de esgoto. O padrão de emissão de C-CO2 foi semelhante nos dois tipos de lodos de esgoto. Houve aumento da liberação de C-CO2 com o aumento das doses dos dois lodos de esgoto. A taxa respiratória foi maior no início da incubação, observando-se 50% ou mais da decomposição total da matéria orgânica dos lodos de esgoto nos primeiros 15 dias. A biodecomposição estimada da matéria orgânica aplicada ao solo via lodos de esgoto foi de 15%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A bananeira (Musa spp.) é uma planta monocotiledônea herbácea, apresentando caule subterrâneo (rizoma) de onde saem as raízes, em grupos de três ou quatro, totalizando 200 a 500 raízes. O diâmetro predominante das raízes é de 0,2 mm a 0,3 mm, sendo que 60% do sistema radicular estão concentrados na profundidade de 0 a 30 cm e 80% entre 0 a 50 cm, O pseudocaule é formado por bainhas foliares, terminando por uma copa de folhas compridas e largas, com nervura central desenvolvida. É uma planta cultivada de norte a sul do país, em diversos tipos de solos.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present study, a method based on transmission-line mode for a porous electrode was used to measure the ionic resistance of the anode catalyst layer under in situ fuel cell operation condition. The influence of Nafion content and catalyst loading in the anode catalyst layer on the methanol electro-oxidation and direct methanol fuel cell (DMFC) performance based on unsupported Pt-Ru black was investigated by using the AC impedance method. The optimal Nafion content was found to be 15 wt% at 75 degrees C. The optimal Pt-Ru loading is related to the operating temperature, for example, about 2.0 mg/cm(2) for 75-90 degrees C, 3.0 mg/cm2 for 50 degrees C. Over these values, the cell performance decreased due to the increases in ohmic and mass transfer resistances. It was found that the peak power density obtained was 217 mW/cm(2) with optimal catalyst and Nafion loading at 75 degrees C using oxygen. (c) 2005 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este trabalho teve como objetivo avaliar o crescimento e a producao da borracha de clones seringueira [Havea brasiliensis ( Wild. Ex Adr. De Juss.) Muell. Arg.] sob diferentes sistemas de sangria, em condição de Cerrado dos Municipios de Barro Alto Goianesia no Estado de Goais. O plantio foi feito em fevereiro de 1992, no espacamento de 8,0 x 2,5 m (500 plantas/ha), em talhoes de 8 a 10 hectares para cada um dos clones RRIM 600, GT 1, PB 217, PB 235, PR 107 e PR 255 os quais receberam as mesmas praticas de manejo. Aos oito anos de idade, foram feitas as seguintes avaliacoes: estande final; circunferencia do caule a 1,20 m do solo; porcentagens de plantas aptas a sangria; producao de borracha acumulada na caneca pesada mensalmente; incidencia de seca de painel. A producao foi avaliada em nove sistemas de sangria em meia espiral (1/2 S), praticados cinco dias por semana (5d/7) e 10 meses ao ano (10m/12), variando na frequência de sangria (d/4 e d/7 = a cada 4 e 7 dias), a concentracao de Ethephon (ET 0,25%, 2,5%,3,3% e 5,0%) e sua frequencia de aplicacao durante o periodo chuvoso ( a cada 22, 28 e 35 dias), como segue: 1) 1/2S, d/7, ET 2,5% a cada 22 dias; 2)1/2S, d/7, ET 2,5% a cada 30 dias (referncia); 3) 1/2S. d/4, ET 2,5% a cada 30 dias; 4) 1/2S, d/7, ET 3,3% a cada 22 dias; 5)1/2S, d/7, ET 3,3% a cada 30 dias; 6) 1/2S. d/7, ET 5,0% a cada 22 dias 7) 1/2S, d/7, ET 5,0% a cada 30 dias; 8) 1/2S, d/7, ET 5,0% a cada 35 dias; 9) 1/2S, d/7, ET 0,25% (pulverizando 10 ml por painel) a cada 22 dias. Nos sistemas 1 a 8, o Ethephon foi pincelado ( 1mL) na canaleta de corte e ate 2 cm acima dela (Pa e La). O delineamento experimental foi de blocos ao acaso, com quatro repeticoes de 10 plantas poe parcela. Cada clone constitui um experimento separado, sendo os resultados de producao acumulada anual submetidos a analise de variancia e, nos caso de significancia, as medias dos sistemas foram comparadas pelo teste Tukey, ao nível de 5% de probabilidade. Nao foi constatada qualquer incidencia de seca de painel e os resultados possibilitaram as seguintes conclusoes para as condicoes da regiao: 1) o sistema 1/2S, d/7, ET 2,5% a cada 30 dias e o mais indicado par a sangria dos clones PR 255, PR 107, PB 235, PB 217 e GT 1; 2) o sistema 1/2S, d/7, ET 3,3% a cada 30 dias e o mais indicado para a sangria do clone RRIM 600; 3) a producao individual de borracha em kg/planta/ano e maior nos clones RRIM 600, PB 217 e PR 255, enquanto a producao total em kg/ha/ano e superior nos clones RRIM 600 e PB 235; 4)os clones PB 217 e PR 255 sao menos adaptados a regiao, apresentando menores valores de estande final, circunferencia do caule, porcentagem de plantas em sangria e de producao total de borracha por hectare.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

On-board image guidance, such as cone-beam CT (CBCT) and kV/MV 2D imaging, is essential in many radiation therapy procedures, such as intensity modulated radiotherapy (IMRT) and stereotactic body radiation therapy (SBRT). These imaging techniques provide predominantly anatomical information for treatment planning and target localization. Recently, studies have shown that treatment planning based on functional and molecular information about the tumor and surrounding tissue could potentially improve the effectiveness of radiation therapy. However, current on-board imaging systems are limited in their functional and molecular imaging capability. Single Photon Emission Computed Tomography (SPECT) is a candidate to achieve on-board functional and molecular imaging. Traditional SPECT systems typically take 20 minutes or more for a scan, which is too long for on-board imaging. A robotic multi-pinhole SPECT system was proposed in this dissertation to provide shorter imaging time by using a robotic arm to maneuver the multi-pinhole SPECT system around the patient in position for radiation therapy.

A 49-pinhole collimated SPECT detector and its shielding were designed and simulated in this work using the computer-aided design (CAD) software. The trajectories of robotic arm about the patient, treatment table and gantry in the radiation therapy room and several detector assemblies such as parallel holes, single pinhole and 49 pinholes collimated detector were investigated. The rail mounted system was designed to enable a full range of detector positions and orientations to various crucial treatment sites including head and torso, while avoiding collision with linear accelerator (LINAC), patient table and patient.

An alignment method was developed in this work to calibrate the on-board robotic SPECT to the LINAC coordinate frame and to the coordinate frames of other on-board imaging systems such as CBCT. This alignment method utilizes line sources and one pinhole projection of these line sources. The model consists of multiple alignment parameters which maps line sources in 3-dimensional (3D) space to their 2-dimensional (2D) projections on the SPECT detector. Computer-simulation studies and experimental evaluations were performed as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise and acquisition geometry. In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, the six alignment parameters (3 translational and 3 rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by Radon transform, the estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution and detector acquisition geometry. The estimation accuracy was significantly improved by using 4 line sources rather than 3 and also by using thinner line-source projections (obtained by better intrinsic detector resolution). With 5 line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist.

Simulation studies were performed to investigate the improvement of imaging sensitivity and accuracy of hot sphere localization for breast imaging of patients in prone position. A 3D XCAT phantom was simulated in the prone position with nine hot spheres of 10 mm diameter added in the left breast. A no-treatment-table case and two commercial prone breast boards, 7 and 24 cm thick, were simulated. Different pinhole focal lengths were assessed for root-mean-square-error (RMSE). The pinhole focal lengths resulting in the lowest RMSE values were 12 cm, 18 cm and 21 cm for no table, thin board, and thick board, respectively. In both no table and thin board cases, all 9 hot spheres were easily visualized above background with 4-minute scans utilizing the 49-pinhole SPECT system while seven of nine hot spheres were visible with the thick board. In comparison with parallel-hole system, our 49-pinhole system shows reduction in noise and bias under these simulation cases. These results correspond to smaller radii of rotation for no-table case and thinner prone board. Similarly, localization accuracy with the 49-pinhole system was significantly better than with the parallel-hole system for both the thin and thick prone boards. Median localization errors for the 49-pinhole system with the thin board were less than 3 mm for 5 of 9 hot spheres, and less than 6 mm for the other 4 hot spheres. Median localization errors of 49-pinhole system with the thick board were less than 4 mm for 5 of 9 hot spheres, and less than 8 mm for the other 4 hot spheres.

Besides prone breast imaging, respiratory-gated region-of-interest (ROI) imaging of lung tumor was also investigated. A simulation study was conducted on the potential of multi-pinhole, region-of-interest (ROI) SPECT to alleviate noise effects associated with respiratory-gated SPECT imaging of the thorax. Two 4D XCAT digital phantoms were constructed, with either a 10 mm or 20 mm diameter tumor added in the right lung. The maximum diaphragm motion was 2 cm (for 10 mm tumor) or 4 cm (for 20 mm tumor) in superior-inferior direction and 1.2 cm in anterior-posterior direction. Projections were simulated with a 4-minute acquisition time (40 seconds per each of 6 gates) using either the ROI SPECT system (49-pinhole) or reference single and dual conventional broad cross-section, parallel-hole collimated SPECT. The SPECT images were reconstructed using OSEM with up to 6 iterations. Images were evaluated as a function of gate by profiles, noise versus bias curves, and a numerical observer performing a forced-choice localization task. Even for the 20 mm tumor, the 49-pinhole imaging ROI was found sufficient to encompass fully usual clinical ranges of diaphragm motion. Averaged over the 6 gates, noise at iteration 6 of 49-pinhole ROI imaging (10.9 µCi/ml) was approximately comparable to noise at iteration 2 of the two dual and single parallel-hole, broad cross-section systems (12.4 µCi/ml and 13.8 µCi/ml, respectively). Corresponding biases were much lower for the 49-pinhole ROI system (3.8 µCi/ml), versus 6.2 µCi/ml and 6.5 µCi/ml for the dual and single parallel-hole systems, respectively. Median localization errors averaged over 6 gates, for the 10 mm and 20 mm tumors respectively, were 1.6 mm and 0.5 mm using the ROI imaging system and 6.6 mm and 2.3 mm using the dual parallel-hole, broad cross-section system. The results demonstrate substantially improved imaging via ROI methods. One important application may be gated imaging of patients in position for radiation therapy.

A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150-L110 robot). An imaging study was performed with a phantom (PET CT PhantomTM), which includes 5 spheres of 10, 13, 17, 22 and 28 mm in diameter. The phantom was placed on a flat-top couch. SPECT projections were acquired with a parallel-hole collimator and a single-pinhole collimator both without background in the phantom, and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180 degrees and 228 degrees respectively. The pinhole detector viewed a 14.7 cm-diameter common volume which encompassed the 28 mm and 22 mm spheres. The common volume for parallel-hole was a 20.8-cm-diameter cylinder which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the flat-top table while avoiding collision with the table and maintaining the closest possible proximity to the common volume. For image reconstruction, detector trajectories were described by radius-of-rotation and detector rotation angle θ. These reconstruction parameters were obtained from the robot base and tool coordinates. The robotic SPECT system was able to maneuver the parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector to center-of-rotation (COR) distance. In no background case, all five spheres were visible in the reconstructed parallel-hole and pinhole images. In with background case, three spheres of 17, 22 and 28 mm diameter were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameter) were readily observed in the pinhole ROI imaging.

In conclusion, the proposed on-board robotic SPECT can be aligned to LINAC/CBCT with a single pinhole projection of the line-source phantom. Alignment parameters can be estimated using one pinhole projection of line sources. This alignment method may be important for multi-pinhole SPECT, where relative pinhole alignment may vary during rotation. For single pinhole and multi-pinhole SPECT imaging onboard radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC. In simulation studies of prone breast imaging and respiratory-gated lung imaging, the 49-pinhole detector showed better tumor contrast recovery and localization in a 4-minute scan compared to parallel-hole detector. On-board SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

*Hydraulic redistribution (HR) of water via roots from moist to drier portions of the soil occurs in many ecosystems, potentially influencing both water use and carbon assimilation. *By measuring soil water content, sap flow and eddy covariance, we investigated the temporal variability of HR in a loblolly pine (Pinus taeda) plantation during months of normal and below-normal precipitation, and examined its effects on tree transpiration, ecosystem water use and carbon exchange. *The occurrence of HR was explained by courses of reverse flow through roots. As the drought progressed, HR maintained soil moisture above 0.15 cm(3) cm(-3) and increased transpiration by 30-50%. HR accounted for 15-25% of measured total site water depletion seasonally, peaking at 1.05 mm d(-1). The understory species depended on water redistributed by the deep-rooted overstory pine trees for their early summer water supply. Modeling carbon flux showed that in the absence of HR, gross ecosystem productivity and net ecosystem exchange could be reduced by 750 and 400 g C m(-2) yr(-1), respectively. *Hydraulic redistribution mitigated the effects of soil drying on understory and stand evapotranspiration and had important implications for net primary productivity by maintaining this whole ecosystem as a carbon sink.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification.