993 resultados para nitrite, in surface water
Resumo:
The benthic foraminiferal populations along three traverses across the Northwest African continental margin were analyzed on the base of ca. 60 surface sediment samples. Depth ranges of 213 species were established and the main trends of vertical distribution are compared with those known from adjacent regions. Main faunal breaks occure at 100/200 m and 1000/1500 m depth of water. Some species show latitudinal distribution boundaries and the same applies to population density (standing stock), reflecting the regional distribution of nutrients supply by river discharge and upwelling processes. - High proportions of Bolivina test at the lower slope indicate extended downslope transport.
Resumo:
Shell chemistry of planktic foraminifera and the alkenone unsaturation index in 69 surface sediment samples in the tropical eastern Indian Ocean off West and South Indonesia were studied. Results were compared to modern hydrographic data in order to assess how modern environmental conditions are preserved in sedimentary record, and to determine the best possible proxies to reconstruct seasonality, thermal gradient and upper water column characteristics in this part of the world ocean. Our results imply that alkenone-derived temperatures record annual mean temperatures in the study area. However, this finding might be an artifact due to the temperature limitation of this proxy above 28°C. Combined study of shell stable oxygen isotope and Mg/Ca ratio of planktic foraminifera suggests that Globigerinoides ruber sensu stricto (s.s.), G. ruber sensu lato (s.l.), and G. sacculifer calcify within the mixed-layer between 20 m and 50 m, whereas Globigerina bulloides records mixed-layer conditions at ~50 m depth during boreal summer. Mean calcifications of Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, and Globorotalia tumida occur at the top of the thermocline during boreal summer, at ~75 m, 75-100 m, and 100 m, respectively. Shell Mg/Ca ratios of all species show a significant correlation with temperature at their apparent calcification depths and validate the application of previously published temperature calibrations, except for G. tumida that requires a regional Mg/Ca-temperature calibration (Mg/Ca = 0.41 exp (0.068*T)). We show that the difference in Mg/Ca-temperatures of the mixed-layer species and the thermocline species, particularly between G. ruber s.s. (or s.l.) and P. obliquiloculata, can be applied to track changes in the upper water column stratification. Our results provide critical tools for reconstructing past changes in the hydrography of the study area and their relation to monsoon, El Niño-Southern Oscillation, and the Indian Ocean Dipole Mode.
Resumo:
Results of investigation of various forms of oil pollution, i.e. oil films, tar, and hydrocarbons in the Northeast Atlantic Ocean and North Indian Ocean during October-December 1980 and February-May 1981 are presented. Oil pollution was found only in regions of the heaviest ship traffic and was somewhat less than in 1976-1977. Background concentration of non-polar hydrocarbons was 8-10 ?g/l in surface waters and 14 ?g/l in the shelf zone. Infrared spectroscopy and gas-liquid chromatography indicate that hydrocarbons occurring at concentrations exceeding 50 ?g/l have composition differing from background hydrocarbons. There is considerable accumulation of hydrocarbons in the thin surface layer, and they exist in different forms close to pollution sources.
Resumo:
This work presents results of a study of plankton and benthic microbiocenoses of the Amur River estuary. It is shown that distribution of total abundance and indicator groups of bacteriobenthos are characterized by stronger heterogeneity compared with bacterioplankton and that it depends on the Amur River runoff and bottom type. The river runoff helps by increasing overall bacterioplankton abundance in the near-mouth part of the estuary. Microorganisms utilizing low concentrations of organic matter (OM) play major role in processes of OM utilization in water and bottom sediments. Saprophytic bacteria play a significant role in OM utilization only in water at certain sampling sites in the Tatarsky Strait and Sakhalin Bay and in bottom sediments sampled in the mouth part of the estuary. Some parts of the estuary subjected to organic contamination are found according to microbiological characteristics. It is shown that fluctuation of salinity leads to change of the role of bacteria with different food demands in the microbial community.
Resumo:
We present excess Ba (Baxs) data (i.e., total Ba corrected for lithogenic Ba) for surface sediments from a north-south transect between the Polar Front Zone and the northern Weddell Gyre in the Atlantic sector and between the Polar Front Zone and the Antarctic continent in the Indian sector. Focus is on two different processes that affect excess Ba accumulation in the sediments: sediment redistribution and excess Ba dissolution. The effect of these processes needs to be corrected for in order to convert accumulation rate into vertical rain rate, the flux component that can be linked to export production. In the Southern Ocean a major process affecting Ba accumulation rate is sediment focusing, which is corrected for using excess 230Th. This correction, however, may not always be straightforward because of boundary scavenging effects. A further major process affecting excess Ba accumulation is barite dissolution during exposure at the sediment-water column interface. Export production estimates derived from excess 230Th and barite dissolution corrected Baxs accumulation rates (i.e., excess Ba vertical rain rates) are of the same magnitude but generally larger than export production estimates based on water column proxies (234Th-deficit in the upper water column; particulate excess Ba enrichment in the mesopelagic water column). We believe export production values based on excess Ba vertical rain rate might be overestimated due to inaccurate assessment of the Baxs preservation rate. Barite dissolution has, in general, been taken into account by relating it to exposure time before burial depending on the rate of sediment accumulation. However, the observed decrease of excess Ba content with increasing water column depth (or increasing hydrostatic pressure) illustrates the dependence of barite preservation on degree of saturation in the deep water column in accordance with available thermodynamic data. Therefore correction for barite dissolution would not be appropriate by considering only exposure time of the barite to some uniformly undersaturated deep water but requires also that regional differences in degree of undersatuation be taken into account.
Resumo:
Coastal communities around the world face increasing risk from flooding as a result of rising sea level, increasing storminess, and land subsidence. Salt marshes can act as natural buffer zones, providing protection from waves during storms. However, the effectiveness of marshes in protecting the coastline during extreme events when water levels and waves are highest is poorly understood. Here, we experimentally assess wave dissipation under storm surge conditions in a 300-m-long wave flume that contains a transplanted section of natural salt marsh. We find that the presence of marsh vegetation causes considerable wave attenuation, even when water levels and waves are high. From a comparison with experiments without vegetation, we estimate that up to 60% of observed wave reduction is attributed to vegetation. We also find that although waves progressively flatten and break vegetation stems and thereby reduce dissipation, the marsh substrate remained remarkably stable and resistant to surface erosion under all conditions.The effectiveness of storm wave dissipation and the resilience of tidal marshes even at extreme conditions suggest that salt marsh ecosystems can be a valuable component of coastal protection schemes.
Resumo:
Lysocline reconstructions play an important role in scenarios purporting to explain the lowered atmospheric CO2 content of glacial time. These reconstructions are based on indicators such as the CaCO3 content, the percent of coarse fraction, the ratio of fragments to whole foraminifera shells, the ratio of solution-susceptible to solution-resistant species, and the ratio of coarse to fine CaCO3. All assume that changes with time in the composition of the input material do not bias the result. However, as the composition of the input material does depend on climate, none of these indicators provides an absolute measure of the extent of dissolution. In this paper we evaluate the reliability of the ratio of >63 µm CaCO3 to total CaCO3 as a dissolution indicator. We present here results that suggest that in today's tropics this ratio appears to be determined solely by CO3= ion concentration and water depth (i.e., the saturation state of bottom waters). This finding offers the possibility that the size fraction index can be used to reconstruct CO3= ion concentrations for the late Quaternary ocean to an accuracy of ±5 µmol/kg.
Geochemical analysis of surface water samples of a tidal basin of the German Wadden Sea at site SENK