969 resultados para (CH3OH)-C-13
Dietary analysis of the herbivorous hemiramphid Hyporhamphus regularis ardelio: an isotopic approach
Resumo:
The stable isotope values for a range of size classes of Hyporhamphus regularis ardelio from Moreton Bay, south-east Australia were determined. There was a positive linear relationship between 613 C and standard length (L-s) (delta(13)C = 0.034 Ls - 16-23; r(2) = 0.78). delta(13)C ranged from -8.48 to - 17.29 parts per thousand with the smallest size class (50 mm Ls) being on average 1.04 parts per thousand enriched with respect to that of zooplankton (Temora turbinata) and 7.97 parts per thousand depleted compared to Zostera capricorni. delta(13)C was positively correlated with Ls (P 0.0 1) with delta(15) N, ranging from 9.18 to 11.00 parts per thousand. Fish of all size classes were on average 2.32 and 7.63 parts per thousand more enriched than zooplankton and seagrass, respectively. Carbon isotope data indicate that H. r. ardelio commence life as carnivores and change to a diet in which seagrass is the primary carbon source. The dependence on animal matter, however, is always present. Due to the low percentage of nitrogen in Z. capricorni (2.5%) compared to zooplankton (9.1%) it appears that nitrogen from zooplankton is necessary throughout their life history with the carbon requirements for these fish coming chiefly from Z. capricorni. (c) 2005 The Fisheries Society of the British Isles.
Resumo:
Figs are rainforest keystone species. Non-strangler figs establish on the forest floor; strangler figs establish epiphytically, followed by a dramatic transition from epiphyte to free-standing tree that kills its hosts. Free-standing figs display vigorous growth and resource demand suggesting that epiphytic strangler figs require special adaptations to deal with resource limitations imposed by the epiphytic environment. We studied epiphytic and free-standing strangler figs, and non-strangler figs in tropical rainforest and in cultivation, as well as strangler figs in controlled conditions. We investigated whether the transition from epiphyte to free-standing tree is characterised by morphological and physiological plasticity. Epiphyte substrate had higher levels of plant-available ammonium and phosphate, and similar levels of nitrate compared with rainforest soil, suggesting that N and P are initially not limiting resources. A relationship was found between taxonomic groups and plant N physiology; strangler figs, all members of subgenus Urostigma, had mostly low foliar nitrate assimilation rates whereas non-strangler figs, in subgenera Pharmacocycea, Sycidium, Sycomorus or Synoecia, had moderate to high rates. Nitrate is an energetically expensive N source, and low nitrate use may be an adaptation of strangler figs for conserving energy during epiphytic growth. Interestingly, significant amounts of nitrate were stored in fleshy taproot tubers of epiphytic stranglers. Supporting the concept of plasticity, leaves of epiphytic Ficus benjamina L. had lower N and C content per unit leaf area, lower stomatal density and 80% greater specific leaf area than leaves of conspecific free-standing trees. Similarly, glasshouse-grown stranglers strongly increased biomass allocation to roots under water limitation. Epiphytic and free-standing F. benjamina had similar average foliar delta C-13, but epiphytes had more extreme values; this indicates that both groups of plants use the C-3 pathway of CO2 fixation but that water availability is highly variable for epiphytes. We hypothesise that epiphytic figs use fleshy stem tubers to avoid water stress, and that nitrate acts as an osmotic compound in tubers. We conclude that strangler figs are a unique experimental system for studying the transition from rainforest epiphyte to tree, and the genetic and environmental triggers involved.
Resumo:
The synthesis, characterization and thermal behaviour of some new dimeric allylpalladium (II) complexes bridged by pyrazolate ligands are reported. The complexes [Pd(mu-3, 5-R'(2)pz)(eta(3)-CH2C(R)CH2)](2) [R = H; R'= CH(CH3)(2) (1a); R = H, R' = C(CH3)(3) (1b), R = H; R' = CF3 (1c); R = CH3, R' = CH(CH3)(2) (2a); R = CH3, R' = C(CH3)(3) (2b); and R = CH3, R' = CF3 (2c)] have been prepared by the room temperature reaction of [Pd(eta(3)-CH2C(R)CH2)(acac)](acac = acetylacetonate) with 3,5-disubstituted pyrazoles in acetonitrile solution. The complexes have been characterized by NMR (H-1, C-13{H-1}), FT-IR, and elemental analyses. The structure of a representative complex, viz. 2c, has been established by single-crystal X-ray diffraction. The dinuclear molecule features two formally square planar palladium centres which are bridged by two pyrazole ligands and the coordination of each metal centre is completed by allyl substituents. The molecule has non-crystallographic mirror symmetry. Thermogravimetric studies have been carried out to evaluate the thermal stability of these complexes. Most of the complexes thermally decompose in argon atmosphere to give nanocrystals of palladium, which have been characterized by XRD, SEM and TEM. However, complex 2c can be sublimed in vacuo at 2 mbar without decomposition. The equilibrium vapour pressure of 2c has been measured by the Knudsen effusion technique. The vapour pressure of the complex 2c could be expressed by the relation: In (p/Pa)(+/- 0.06) = -18047.3/T + 46.85. The enthalpy and entropy of vapourization are found to be 150.0 +/- 3 kJ mol(-1) and 389.5 +/- 8 J K-1 mol(-1), respectively. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The preparation and characterization of a series of trinuclear mixed-valence cyano-bridged Co-III-Fe-II-Co-III compounds derived from known dinuclear [{LnCoIII(mu-NC)}Fe-II(CN)(5)](-) complexes (L-n = N-5 or N3S2 n-membered pendant amine macrocycle) are presented. All of the new trinuclear complexes were fully characterized spectroscopically (UV-vis, IR, and C-13 NMR). Complexes exhibiting a trans and cis arrangement of the Co-Fe-Co units around the [Fe(CN)(6)](4-) center are described (i.e., cis/trans-[{LnCoIII(mu-NC)}(2)Fe-II(CN)(4)](2+)), and some of their structures are determined by X-ray crystallography. Electrochemical experiments revealed an expected anodic shift of the Fe-III/II redox potential upon addition of a tripositively charged {(CoLn)-L-III} moiety. The Co-III/II redox potentials do not change greatly from the di- to the trinuclear complex, but rather behave in a fully independent and noncooperative way. In this respect, the energies and extinction coefficients of the MMCT bands agree with the formal existence of two mixed-valence Fe-II-CN-Co-III units per molecule. Solvatochromic experiments also indicated that the MMCT band of these compounds behaves as expected for a class II mixed-valence complex. Nevertheless, its extinction coefficient is dramatically increased upon increasing the solvent donor number.
Resumo:
Climate change is expected to affect the high latitudes first and most severely, rendering Antarctica one of the most significant baseline environments for the study of global climate change. The indirect effects of climate warming, including changes to the availability of key environmental resources, such as water and nutrients, are likely to have a greater impact upon continental Antarctic terrestrial ecosystems than the effects of fluctuations in temperature alone. To investigate the likely impacts of a wetter climate on Antarctic terrestrial communities a multiseason, manipulative field experiment was conducted in the floristically important Windmill Islands region of East Antarctica. Four cryptogamic communities (pure bryophyte, moribund bryophyte, crustose and fructicose lichen-dominated) received increased water and/or nutrient additions over two consecutive summer seasons. The increased water approximated an 18% increase in snow melt days (0.2 degrees C increase in temperature), while the nutrient addition of 3.5g Nm(-2) yr(-1) was within the range of soil N in the vicinity. A range of physiological and biochemical measurements were conducted in order to quantify the community response. While an overall increase in productivity in response to water and nutrient additions was observed, productivity appeared to respond more strongly to nutrient additions than to water additions. Pure bryophyte communities, and lichen communities dominated by the genus Usnea, showed stronger positive responses to nutrient additions, identifying some communities that may be better able to adapt and prosper under the ameliorating conditions associated with a warmer, wetter future climate. Under such a climate, productivity is overall likely to increase but some cryptogamic communities are likely to thrive more than others. Regeneration of moribund bryophytes appears likely only if a future moisture regime creates consistently moist conditions.
Resumo:
Photosynthesis of zooxanthellate stony corals may be limited by inorganic carbon at high irradiances. We demonstrated that oxygen consumption of expanded corals is higher than that of contracted corals in both night-expanding and day-expanding corals. It is assumed that at the single-polyp level, the expansion of tentacles increases the surface area for solute exchange with the surrounding water, which may alleviate potential carbon limitation and excess oxygen levels in the tissue under high irradiance. We investigated this hypothesis using stable carbon isotope (613 C) analysis of coral species from the Red Sea exhibiting different morphologies. delta C-13 ratios in zooxanthellae of branched coral colonies with small polyp size that extend their tentacles during daytime (diurnal morphs) showed lower delta C-13 values in their zooxanthellae - 13.83 +/- 1.45 parts per thousand, compared to corals from the same depth with large polyps, which are usually massive and expand their tentacles only at night (nocturnal morphs). Their algae delta C-13 was significantly higher, averaging - 11.33 +/- 0.59 parts per thousand. Carbon isotope budget of the coral tissue suggests that branched corals are more autotrophic, i.e., that they depend on their symbionts for nutrition compared to massive species, which are more heterotrophic and depend on plankton predation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Rice (Oryza sativa L.) plants are susceptible to low temperature during the young microspore stage, which occurs 10-12 days before heading. Low temperature at this time increases spikelet sterility which can cause massive yield loss. Increasing the cold tolerance of cultivars can reduce yield variability in temperate rice-growing environments. Two experiments were conducted in cold air screenings and two were conducted in cold water screenings to examine genotypic variation for cold tolerance, explore flowering traits related to spikelet sterility, and investigate whether the results reflect the level of cold tolerance determined previously in the field. Cold air screenings imposed day/night temperatures of 27 degrees C/13 degrees C, 25 degrees C/15 degrees C and 32 degrees C/25 degrees C following particle initiation until 50% heading, while cold water screenings maintained a relatively constant 19 degrees C. The variation in the commencement of low air temperature treatment did not have an effect on the level of spikelet sterility, indicating that exposure to low temperature during the young microspore stage was more important than the duration of exposure. Spikelet sterility of common cultivars showed a significant correlation between cold air and cold water screenings (r(2) = 0.63, p < 0.01), cold air and field screenings (r(2) = 0.52, p < 0.01) and cold water and field screenings (r(2) = 0.53, p < 0.01), indicating that cold air and cold water can be used for screening genotypes for low temperature tolerance. HSC55, M 103 and Jyoudeki were identified as cold tolerant and Doongara, Sasanishiki and Nipponbare as susceptible cultivars. There was a significant negative relationship between spikelet sterility and both the number of engorged pollen grains per anther and anther area only after imposing cold air and cold water treatment hence, it was concluded that these flowering traits were facultative in nature. In addition, cultivars originating from Australia and California were inefficient at producing filled grain with similar sized anthers containing a similar number of engorged pollen grains as cultivars from other origins. One suggested reason for this poor conversion to filled grain of cultivars from Australia and California may be associated with their small stigma area, particularly when exposed to low temperature conditions. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conotoxins are small conformationally constrained peptides found in the venom of marine snails of the genus Conus. They are usually cysteine rich and frequently contain a high degree of post-translational modifications such as C-terminal amidation, hydroxylation, carboxylation, bromination, epimerisation and glycosylation. Here we review the role of NMR in determining the three-dimensional structures of conotoxins and also provide a compilation and analysis of H-1 and C-13 chemical shifts of post-translationally modified amino acids and compare them with data from common amino acids. This analysis provides a reference source for chemical shifts of post-translationally modified amino acids. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
Determination of the bicarbonate retention factor (BRF) is an important step during development of the indicator amino acid oxidation technique for use in a new model. A series of 4-h oxidation experiments were performed to determine the BRF of broilers aged 7, 14, 21, 28, 35, and 42 d using 4 birds per age group. A priming dose of 1.2 mu Ci of (NaHCO3)-C-14, followed by eight half-hourly doses of 1 mu Ci of (NaHCO3)-C-14 were given orally to each of 4 birds per age. The percentage of 14 C dose expired by the bird at a steady state was measured. These birds, as well as 12 additional birds matched for age and BW, were killed, and femur bone mineral density was measured by quantitative computed tomography to determine the relationship between bone development and bicarbonate retention at each age. There was a correlation (r = 0.50; P < 0.05) between total cross-sectional femur bone mineral density and bicarbonate retention at each age. A prediction equation (Y = 6.95 x 10(-2) X - 3.51 x 10(5)X(2) + 27.58; P < 0.0001, R-2 = 0.79) where Y = bicarbonate retention and X = BW was generated to predict Y as a function of X. Bicarbonate retention values peaked at 28 d, during the stage of the most rapid bone deposition and the highest growth rate. A constant BRF was found from 1,900 to 2,700 g of BW of 35.15 +/- 1.095% (mean SEM). This retention factor will allow the accurate correction of oxidation of C-14-labeled substrates in broilers of different ages and BW in future indicator amino acid oxidation studies.
Resumo:
The feasibility of sequential carboplatin followed by docetaxel-based therapy for untreated ovarian cancer was determined. Patients received four q3w cycles of carboplatin AUC 7, then four q3w cycles of either docetaxel 100 mg m(-2) (day 1) (arm A); docetaxel 75 mg m(-2) (day 8) and gemcitabine 1250 mg m(-2) (days 1,8) (arm B) or docetaxel 25 mg m(-2) and gemcitabine 800 mg m(-2) (both given weekly (days 1,8,15)) (arm C). A total of 44 patients were randomised to each treatment arm. None of the arms demonstrated an eight cycle completion rate (70.5/72.7/45.5% in arms A/B/C, respectively), which was statistically greater than 60% (P = 0.102, P = 0.056, P = 0.982) which was our formal feasibility criteria, although only the completion rate in arm C was clearly worse than this level. The overall response rate (ORR) after carboplatin was 65.7% in 70 evaluable patients. In evaluable patients, ORRs after docetaxel-based cycles were: arm A 84.0% (21 out of 25); arm B 77.3% (17 out of 22); arm C 69.6% (16 out of 23). At follow-up (median 30 months), median progression-free survival times were: arm A 15.5 months (95% Cl: 10.5 - 20.6); arm B 18.1 months (95% Cl: 15.9 - 20.3); arm C, 13.7 months (95% Cl: 12.8 - 14.6). Neutropenia was the predominant grade 3 - 4 haematological toxicity: 77.8/85.7/54.4% in arms A/B/C, respectively. Dyspnoea was markedly increased in both gemcitabine-containing arms (P = 0.001) but was worse in arm C. Although just failing to rule out eight cycle completion rates less than 60%, within the statistical limitations of these small cohorts, the overall results for arms A and B are encouraging. Larger phase III studies are required to test these combinations.
Resumo:
Antarctic bryophyte communities presently tolerate physiological extremes in water availability, surviving both desiccation and submergence events. We investigated the relative ability of three Antarctic moss species to tolerate physiological extremes in water availability and identified physiological, morphological, and biochemical characteristics that assist species performance under such conditions. Tolerance of desiccation and submergence was investigated using chlorophyll fluorescence during a series of field- and laboratory-based water stress events. Turf water retention and degree of natural habitat submergence were determined from gametophyte shoot size and density, and delta C-13 signatures, respectively. Finally, compounds likely to assist membrane structure and function during desiccation events (fatty acids and soluble carbohydrates) were determined. The results of this study show significant differences in the performance of the three study species under contrasting water stress events. The results indicate that the three study species occupy distinctly different ecological niches with respect to water relations, and provide a physiological explanation for present species distributions. The poor tolerance of submergence seen in Ceratodon purpureus helps explain its restriction to drier sites and conversely, the low tolerance of desiccation and high tolerance of submergence displayed by the endemic Grimmia antarctici is consistent with its restriction to wet habitats. Finally the flexible response observed for Bryum pseudotriquetrum is consistent with its co-occurrence with the other two species across the bryophyte habitat spectrum. The likely effects of future climate change induced shifts in water availability are discussed with respect to future community dynamics.
Resumo:
The role of non-carbohydrate surface components of granular starch in determining gelatinisation behaviour has been tested by treatment of native starches with a range of extractants. Resulting washed starches were analysed for (bio)chemical, calorimetric and theological properties. Sodium dodecyl sulphate (SDS) was the most efficient extractant tested, and resulted in major changes to the subsequent theological properties of wheat and maize starches but not other starches. Three classes of starch granule swelling behaviour are identified: (i) rapid swelling (e.g. waxy maize, potato), (ii) slow swelling that can be converted to rapid swelling by extraction of surface proteins and lipids (e.g. wheat, maize), and (iii) limited swelling not affected by protein/lipid extraction (e.g. high amylose maize/potato). Comparison of a range of extractants suggests that all of protein, lipid and amylose are involved in restriction of swelling for wheat or maize starches. Treatment of starches with SDS leads to a residue at comparable (low) levels of SDS for all starches. C-13 NMR analysis shows that this SDS is present as a glucan inclusion complex, even for waxy maize starch. We infer that under the conditions used, glucan inclusion complexation of SDS is equally likely with amylopectin as with amylose. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Mudrocks and carbonates of the Isa superbasin in the Lawn Hill platform in northern Australia host major base metal sulfide mineralization, including the giant strata-bound Century Zn-Pb deposit. Mineral paragenesis, stable isotope, and K-Ar dating studies demonstrate that long-lived structures such as the Termite Range fault acted as hot fluid conduits several times during the Paleoproterozoic and Mesoproterozoic in response to major tectonic events. Illite and chlorite crystallinity studies suggest the southern part of the platform has experienced higher temperatures (up to 300 degrees C) than similar stratigraphic horizons in the north. The irregular downhole variation of illite crystallinity values provides further information oil the thermal regime in the basin and shows that clay formation was controlled not only by temperature increase with depth but also by high water/rock ratios along relatively permeable zones. K-Ar dating of illite, in combination with other data, may indicate three major thermal events in the central and northern Lawn Hill platform Lit 1500, 1440 to 1400, and 1250 to 1150 Ma. This study did not detect the earlier Century base metal mineralizing event at 1575 Ma. 1500 Ma ages are recorded only in the south and correspond to the age of the Late Isan orogeny and deposition of the Lower Roper superbasin. They may reflect exhumation of a provenance region. The 1440 to 1300 Ma ages are related to fault reactivation and a thermal pulse at similar to 1440 to 1400 Ma possibly accompanied by fluid flow, with subsequent enhanced cooling possibly due to thermal relaxation or further crustal exhumation. The youngest thermal and/or fluid-flow event at 1250 to 1150 Ma is recorded mainly to the cast of the Tern-lite Range fault and may be related to the assembly of the Rodinian supercontinent. Fluids in equilibrium with illite that formed over a range of temperatures, at different times in different parts of the platform. have relatively uniform oxygen isotope compositions and more variable hydrogen isotope compositions (delta O-18 = 3.5-9.7 parts per thousand V-SMOW; delta D = -94 to -36 parts per thousand V-SMOW). The extent of the 180 enrichment and the variably depleted hydrogen isotope compositions suggest the illite interacted with deep-basin hypersaline brines that were composed of evaporated seawater and/or highly evolved meteoric water. Siderite is the most abundant iron-rich gangue phase in the Century Zn-Pb deposit, which is surrounded by all extensive ferroan carbonate alteration halo. Modeling suggests that the ore siderite formed at temperatures of 120 degrees to 150 degrees C, whereas siderite and ankerite in the alteration halo formed at temperatures of 150 degrees to 180 degrees C. The calculated isotopic compositions of the fluids are consistent with O-18-rich basinal brines and mixed inorganic and organic carbon Sources (6180 = 3-10 parts per thousand V-SMOW, delta C-13 = -7 to -3 parts per thousand V-PDB). in the northeast Lawn Hill platform carbonate-rich rocks preserve marine to early diagenetic carbon and oxygen isotope compositions, whereas ferroan carbonate cements in siltstones and shales in the Desert Creek borehole are O-18 and C-13 depleted relative to the sedimentary carbonates. The good agreement between temperature estimates from illite crystallinity and organic reflectance (160 degrees-270 degrees C) and inverse correlation with carbonate delta O-18 values indicates that organic maturation and carbonate precipitation in the northeast Lawn Hill platform resulted from interaction with the 1250 to 1150 Ma fluids. The calculated isotopic compositions of the fluid are consistent with evolved basinal brine (delta O-18 = 5.1-9.4 parts per thousand V-SMOW; delta C-13 = -13.2 to -3.7 parts per thousand V-PDB) that contained a variable organic carbon component from the oxidation and/or hydrolysis of organic matter in the host sequence. The occurrence of extensive O-18- and C-13-depleted ankerite and siderite alteration in Desert Creek is related to the high temperature of the 1250 to 1150 Ma fluid-flow event in the northeast Lawn Hill platform, in contrast to the lower temperature fluids associated with the earlier Century Zn-Pb deposit in the central Lawn Hill platform.
Resumo:
Grafted GMA on EPR samples were prepared in a Thermo-Haake internal mixer by free radical melt grafting reactions in the absence (conventional system; EPR-g-GMA(CONV)) and presence of the reactive comonomer divinyl benzene, DVB (EPR-g-GMA(DVB)). The GMA-homopolymer (poly-GMA), a major side reaction product in the conventional system, was almost completely absent in the DVB-containing system, the latter also resulted in a much higher level of GMA grafting. A comprehensive microstructure analysis of the formed poly-GMA was performed based on one-dimensional H-1 and C-13 NMR spectroscopy and the complete spectral assignments were supported by two-dimensional NMR techniques based on long range two and three bond order carbon-proton couplings from HMBC (Heteronuclear Multiple Bond Coherence) and that of one bond carbon-proton couplings from HSQC (Heteronuclear Single Quantum Coherence), as well as the use of Distortionless Enhancement by Polarization Transfer (DEPT) NMR spectroscopy. The unambiguous analysis of the stereochemical configuration of poly-GMA was further used to help understand the microstructures of the GMA-grafts obtained in the two different free radical melt grafting reactions, the conventional and comonomer-containing systems. In the grafted GMA, in the conventional system (EPR-g-GMA(CONV)), the methylene protons of the GMA were found to be sensitive to tetrad configurational sequences and the results showed that 56% of the GMA sequence in the graft is in atactic configuration and 42% is in syndiotactic configuration whereas the poly-GMA was predominantly syndiotactic. The differences in the microstructures of the graft in the conventional EPR-g-GMA(CONV) and the DVB-containing (EPR-g-GMA(DVB)) systems is also reported (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fluorescence properties of whole water samples and molecular characteristics of ultrafiltrated dissolved organic matter (UDOM > 1,000 D) such as lignin phenol and neutral sugar compositions and 13C nuclear magnetic resonance (NMR) spectra were determined along a freshwater to marine gradient in Everglades National Park. Furthermore, UDOM samples were categorized by hierarchical cluster analysis based on their pyrolysis gas chromatography/mass spectrometry products. Fluorescence properties suggest that autochthonous DOM leached/exuded from biomass is quantitatively important in this system. 13C NMR spectra showed that UDOM from the oligotrophic Taylor Slough (TS) and Florida Bay (FB) ecosystems has low aromatic C (13% ± 3% for TS; 2% ± 2% for FB) and very high O-alkyl C (54% ± 4% for TS; 75% ± 4% for FB) concentrations. High O-alkyl C concentrations in FB suggest seagrass/phytoplankton communities as dominant sources of UDOM. The amount of neutral sugars was not appreciably different between the TS and FB sites (115 ± 12 mg C g C-1 UDOM) but their concentrations suggest a low level of diagenesis and high production rates of this material in this oligotrophic environment. Total yield of lignin phenols (vanillyl + syringyl phenols) in TS was low (0.20–0.39 mg 100 mg C-1 UDOM) compared with other riverine environments and even lower in FB (0.04–0.07 mg 100 mg C-1 UDOM) and could be a result of photodegradation and/or dilution by other utochthonous DOM. The high O-alkyl and low aromatic nature of this UDOM suggests significant biogenic inputs (as compared with soils) and limited bioavailability in this ecosystem.