964 resultados para wound-healing


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fibroblast growth factor (FGF) family plays key roles in development, wound healing, and angiogenesis. Understanding of the molecular nature of interactions of FGFs with their receptors (FGFRs) has been seriously limited by the absence of structural information on FGFR or FGF–FGFR complex. In this study, based on an exhaustive analysis of the primary sequences of the FGF family, we determined that the residues that constitute the primary receptor-binding site of FGF-2 are conserved throughout the FGF family, whereas those of the secondary receptor binding site of FGF-2 are not. We propose that the FGF–FGFR interaction mediated by the ‘conserved’ primary site interactions is likely to be similar if not identical for the entire FGF family, whereas the ‘variable’ secondary sites, on both FGF as well as FGFR mediates specificity of a given FGF to a given FGFR isoform. Furthermore, as the pro-inflammatory cytokine interleukin 1 (IL-1) and FGF-2 share the same structural scaffold, we find that the spatial orientation of the primary receptor-binding site of FGF-2 coincides structurally with the IL-1β receptor-binding site when the two molecules are superimposed. The structural similarities between the IL-1 and the FGF system provided a framework to elucidate molecular principles of FGF–FGFR interactions. In the FGF–FGFR model proposed here, the two domains of a single FGFR wrap around a single FGF-2 molecule such that one domain of FGFR binds to the primary receptor-binding site of the FGF molecule, while the second domain of the same FGFR binds to the secondary receptor-binding site of the same FGF molecule. Finally, the proposed model is able to accommodate not only heparin-like glycosaminoglycan (HLGAG) interactions with FGF and FGFR but also FGF dimerization or oligomerization mediated by HLGAG.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The identification and physical isolation of epithelial stem cells is critical to our understanding of their growth regulation during homeostasis, wound healing, and carcinogenesis. These stem cells remain poorly characterized because of the absence of specific molecular markers that permit us to distinguish them from their progeny, the transit amplifying (TA) cells, which have a more restricted proliferative potential. Cell kinetic analyses have permitted the identification of murine keratinocyte stem cells (KSCs) as slowly cycling cells that retain [3H]thymidine ([3H]Tdr) label, termed label-retaining cells (LRCs), whereas TA cells are visualized as rapidly cycling cells after a single pulse of [3H]Tdr, termed pulse-labeled cells (PLCs). Here, we report on the successful separation of KSCs from TA cells through the combined use of in vivo cell kinetic analysis and fluorescence-activated cell sorting. Specifically, we demonstrate that murine dorsal keratinocytes characterized by their high levels of α6 integrin and low to undetectable expression of the transferrin receptor (CD71) termed α6briCD71dim cells, are enriched for epithelial stem cells because they represent a minor (≈8%) and quiescent subpopulation of small blast-like cells, with a high nuclear:cytoplasmic ratio, containing ≈70% of label-retaining cells, the latter being a well documented characteristic of stem cells. Conversely, TA cells could be enriched in a phenotypically distinct subpopulation termed α6briCD71bri, representing the majority (≈60%) of basal keratinocytes that are actively cycling, and importantly contain ≈70% of [3H]Tdr pulse-labeled cells. Importantly, immunostaining of dorsal skin revealed the presence of CD71dim cells in the hair follicle bulge region, a well documented location for KSCs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The monomer composition of the esterified part of suberin can be determined using gas chromatography-mass spectroscopy technology and is accordingly believed to be well known. However, evidence was presented recently indicating that the suberin of green cotton (Gossypium hirsutum cv Green Lint) fibers contains substantial amounts of esterified glycerol. This observation is confirmed in the present report by a sodium dodecyl sulfate extraction of membrane lipids and by a developmental study, demonstrating the correlated accumulation of glycerol and established suberin monomers. Corresponding amounts of glycerol also occur in the suberin of the periderm of cotton stems and potato (Solanum tuberosum) tubers. A periderm preparation of wound-healing potato tuber storage parenchyma was further purified by different treatments. As the purification proceeded, the concentration of glycerol increased at about the same rate as that of α,ω-alkanedioic acids, the most diagnostic suberin monomers. Therefore, it is proposed that glycerol is a monomer of suberins in general and can cross-link aliphatic and aromatic suberin domains, corresponding to the electron-translucent and electron-opaque suberin lamellae, respectively. This proposal is consistent with the reported dimensions of the electron-translucent suberin lamellae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epithelial–mesenchymal transitions (EMTs) are an essential manifestation of epithelial cell plasticity during morphogenesis, wound healing, and tumor progression. Transforming growth factor-β (TGF-β) modulates epithelial plasticity in these physiological contexts by inducing EMT. Here we report a transcriptome screen of genetic programs of TGF-β-induced EMT in human keratinocytes and propose functional roles for extracellular response kinase (ERK) mitogen-activated protein kinase signaling in cell motility and disruption of adherens junctions. We used DNA arrays of 16,580 human cDNAs to identify 728 known genes regulated by TGF-β within 4 hours after treatment. TGF-β-stimulated ERK signaling mediated regulation of 80 target genes not previously associated with this pathway. This subset is enriched for genes with defined roles in cell–matrix interactions, cell motility, and endocytosis. ERK-independent genetic programs underlying the onset of EMT involve key pathways and regulators of epithelial dedifferentiation, undifferentiated transitional and mesenchymal progenitor phenotypes, and mediators of cytoskeletal reorganization. The gene expression profiling approach delineates complex context-dependent signaling pathways and transcriptional events that determine epithelial cell plasticity controlled by TGF-β. Investigation of the identified pathways and genes will advance the understanding of molecular mechanisms that underlie tumor invasiveness and metastasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The expression of distinct keratin pairs during epidermal differentiation is assumed to fulfill specific and essential cytoskeletal functions. This is supported by a great variety of genodermatoses exhibiting tissue fragility because of keratin mutations. Here, we show that the loss of K10, the most prominent epidermal protein, allowed the formation of a normal epidermis in neonatal mice without signs of fragility or wound-healing response. However, there were profound changes in the composition of suprabasal keratin filaments. K5/14 persisted suprabasally at elevated protein levels, whereas their mRNAs remained restricted to the basal keratinocytes. This indicated a novel mechanism regulating keratin turnover. Moreover, the amount of K1 was reduced. In the absence of its natural partner we observed the formation of a minor amount of novel K1/14/15 filaments as revealed by immunogold electron microscopy. We suggest that these changes maintained epidermal integrity. Furthermore, suprabasal keratinocytes contained larger keratohyalin granules similar to our previous K10T mice. A comparison of profilaggrin processing in K10T and K10−/− mice revealed an accumulation of filaggrin precursors in the former but not in the latter, suggesting a requirement of intact keratin filaments for the processing. The mild phenotype of K10−/− mice suggests that there is a considerable redundancy in the keratin gene family.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In human patients, a wide range of mutations in keratin (K) 5 or K14 lead to the blistering skin disorder epidermolysis bullosa simplex. Given that K14 deficiency does not lead to the ablation of a basal cell cytoskeleton because of a compensatory role of K15, we have investigated the requirement for the keratin cytoskeleton in basal cells by inactivating the K5 gene in mice. We report that the K5−/− mice die shortly after birth, lack keratin filaments in the basal epidermis, and are more severely affected than K14−/− mice. In contrast to the K14−/− mice, we detected a strong induction of the wound-healing keratin K6 in the suprabasal epidermis of cytolyzed areas of postnatal K5−/− mice. In addition, K5 and K14 mice differed with respect to tongue lesions. Moreover, we show that in the absence of K5 and other type II keratins, residual K14 and K15 aggregated along hemidesmosomes, demonstrating that individual keratins without a partner are stable in vivo. Our data indicate that K5 may be the natural partner of K15 and K17. We suggest that K5 null mutations may be lethal in human epidermolysis bullosa simplex patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large number of functions have been demonstrated for tenascin-C by antibody perturbation assays and in vitro cell culture experiments. However, these results contrast sharply with the lack of any apparent phenotype in mice with a genetic deletion of tenascin-C. A possible explanation for the lack of phenotype would be expression of some altered but functional tenascin-C in the mutant. We report the generation of an independent tenascin-C null mouse and conclude that the original tenascin-C knockout, which is genetically very similar to ours, is also a true null. As found previously, the absence of tenascin-C has no influence on development, adulthood, life span, and fecundity. We have studied in detail two models of wound healing. After axotomy, the regeneration of the sciatic nerve is not altered without tenascin-C. During healing of cutaneous wounds, deposition of collagen I, fibulin-2, and nidogen is identical in mutant and wild-type mice. In contrast. fibronectin appears diminished in wounds of tenascin-C-deficient mice. However, the lack of tenascin-C together with the reduced amount of fibronectin has no influence on the quality of the healing process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Degradable matrices containing expression plasmid DNA [gene-activated matrices (GAMs)] were implanted into segmental gaps created in the adult rat femur. Implantation of GAMs containing beta-galactosidase or luciferase plasmids led to DNA uptake and functional enzyme expression by repair cells (granulation tissue) growing into the gap. Implantation of a GAM containing either a bone morphogenetic protein-4 plasmid or a plasmid coding for a fragment of parathyroid hormone (amino acids 1-34) resulted in a biological response of new bone filling the gap. Finally, implantation of a two-plasmid GAM encoding bone morphogenetic protein-4 and the parathyroid hormone fragment, which act synergistically in vitro, caused new bone to form faster than with either factor alone. These studies demonstrate for the first time that repair cells (fibroblasts) in bone can be genetically manipulated in vivo. While serving as a useful tool to study the biology of repair fibroblasts and the wound healing response, the GAM technology may also have wide therapeutic utility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The availability of gene-targeted mice deficient in the urokinase-type plasminogen activator (uPA), urokinase receptor (uPAR), tissue-type plasminogen activator (tPA), and plasminogen permits a critical, genetic-based analysis of the physiological and pathological roles of the two mammalian plasminogen activators. We report a comparative study of animals with individual and combined deficits in uPAR and tPA and show that these proteins are complementary fibrinolytic factors in mice. Sinusoidal fibrin deposits are found within the livers of nearly all adult mice examined with a dual deficiency in uPAR and tPA, whereas fibrin deposits are never found in livers collected from animals lacking uPAR and rarely detected in animals lacking tPA alone. This is the first demonstration that uPAR has a physiological role in fibrinolysis. However, uPAR-/-/tPA-/- mice do not develop the pervasive, multi-organ fibrin deposits, severe tissue damage, reduced fertility, and high morbidity and mortality observed in mice with a combined deficiency in tPA and the uPAR ligand, uPA. Furthermore, uPAR-/-/tPA-/- mice do not exhibit the profound impairment in wound repair seen in uPA-/-/tPA-/- mice when they are challenged with a full-thickness skin incision. These results indicate that plasminogen activation focused at the cell surface by uPAR is important in fibrin surveillance in the liver, but that uPA supplies sufficient fibrinolytic potential to clear fibrin deposits from most tissues and support wound healing without the benefit of either uPAR or tPA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diversos mecanismos celulares estão associados à patogênese do Carcinoma Epidermoide de Cabeça e Pescoço (CECP). Algumas dessas alterações envolvem proteínas pertencentes à via de sinalização do Akt, e o fator de transcrição NF-kB, o qual têm importante papel na fisiologia normal e no câncer. A proteína COX-2, descrita em processos inflamatórios, também participa da carcinogênese e está associada com a via de sinalização do Akt e com o NF-kB. Dendrímeros são uma forma única de nanotecnologia, surgindo como nanotransportadores com a capacidade de penetrar na célula tumoral liberando drogas quimioterápicas em seu interior. Os benefícios desta tecnologia são o aumento da eficicácia do princípio ativo utilizado e a redução dos seus efeitos secundários tóxicos. O Celecoxibe, antiinflamatório não esteroidal, inibidor seletivo da COX-2, tem se mostrado um importante agente anticarcinogênico, no entanto seu mecanismo de ação no CECP não é totalmente compreendido. Neste trabalho, um Dendrímero de Poliglicerol associado ao Celecoxibe (PGLD-celecoxibe) foi sintetizado e caracterizado por técnicas de espectroscopia ¹H-RMN, ¹³C-RMN, Maldi-Tof, TLC e DSC. Além disso, o conjugado foi testado in vitro em três linhagens celulares de CECP. O PGLD-Celecoxibe foi sintetizado com sucesso e promoveu a redução da dose capaz de inibir a proliferação celular, reduzindo o IC 50 do Celecoxibe de forma significativa em todas as linhagens celulares, se aproximando da dose sérica alcançada por este medicamento, resultado corroborado pelo Ensaio de Migração Celular. O mecanismo de morte celular observado foi a apoptose, associada a diminuição significativa da expressão de COX-2 ou por uma via alternativa independente. Alguns dos grupos tratados apresentaram alteração na expressão das proteínas pAkt e NF-kB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Il est reconnu que la protéine filamenteuse intermédiaire Nestine est exprimée lors du processus de cicatrisation et du remodelage fibrotique. De plus, nous avons identifié l’expression de la Nestine au sein de deux populations distinctes qui sont directement impliquées dans les réponses de fibroses réparative et réactive. Ainsi, une population de cellules souches neurales progénitrices résidentes du coeur de rat adulte exprime la Nestine et a été identifiée à titre de substrat de l’angiogenèse et de la neurogenèse cardiaque. Également, la Nestine est exprimée par les myofibroblastes cicatriciels cardiaques et il a été établi que la protéine filamenteuse intermédiaire joue un rôle dans la prolifération de ces cellules. Ainsi, l’objectif général de cette thèse était de mieux comprendre les évènements cellulaires impliqués dans la réponse neurogénique des cellules souches neurales progénitrices résidentes cardiaques Nestine(+) (CSNPRCN(+)) lors de la fibrose réparative cardiaque et d’explorer si l’apparition de fibroblastes Nestine(+) est associée avec la réponse de fibrose réactive secondaire du remodelage pulmonaire. Une première publication nous a permis d’établir qu’il existe une régulation à la hausse de l’expression de la GAP43 (growth associated protein 43) et que cet événement transitoire précède l’acquisition d’un phénotype neuronal par les CSNPRCN(+) lors du processus de cicatrisation cardiaque chez le rat ayant subi un infarctus du myocarde. De plus, la surimposition de la condition diabétique de type 1, via l’injection unique de Streptozotocine chez le rat, abolit la réponse neurogénique des CSNPRCN(+), qui est normalement induite à la suite de l’ischémie cardiaque ou de l’administration de 6-hydroxydopamine. Le second article a démontré que le développement aigu de la fibrose pulmonaire secondaire de l’infarctus du myocarde chez le rat est associé avec une augmentation de l’expression protéique de la Nestine et de l’apparition de myofibroblastes pulmonaires Nestine(+). Également, le traitement de fibroblastes pulmonaires avec des facteurs de croissances peptidiques pro-fibrotiques a augmenté l’expression de la Nestine par ces cellules. Enfin, le développement initial de la condition diabétique de type 1 chez le rat est associé avec une absence de fibrose réactive pulmonaire et à une réduction significative des niveaux protéiques et d’ARN messager de la Nestine pulmonaire. Finalement, la troisième étude représentait quant à elle un prolongement de la deuxième étude et a alors examiné le remodelage pulmonaire chronique chez un modèle établi d’hypertension pulmonaire. Ainsi, les poumons de rats adultes mâles soumis à l’hypoxie hypobarique durant 3 semaines présentent un remodelage vasculaire, une fibrose réactive et une augmentation des niveaux d’ARN messager et de la protéine Nestine. De plus, nos résultats ont démontré que la Nestine, plutôt que l’alpha-actine du muscle lisse, est un marqueur plus approprié des diverses populations de fibroblastes pulmonaires activés. Également, nos données suggèrent que les fibroblastes pulmonaires activés proviendraient en partie de fibroblastes résidents, ainsi que des processus de transition épithélio-mésenchymateuse et de transition endothélio-mésenchymateuse. Collectivement, ces études ont démontré que des populations distinctes de cellules Nestine(+) jouent un rôle majeur dans la fibrose réparative cardiaque et la fibrose réactive pulmonaire.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coronary and peripheral artery bypass grafting is commonly used to relieve the symptoms of vascular deficiencies, but the Supply Of autologous artery or vein may not be sufficient or suitable for multiple bypass or repeat procedures, necessitating the use of other materials. Synthetic materials are suitable for large bore arteries but often thrombose when used in smaller arteries. Suitable replacement grafts must have appropriate characteristics, including resistance to infection, low immunogenicity and good biocompatability and thromboresistance, with appropriate mechanical and physiological properties and cheap and fast manufacture. Current avenues of graft development include coating synthetic grafts with either biological chemicals or cells with anticoagulatory properties. Matrix templates or acellular tubes of extracellular matrix (such as collagen) may be coated or infiltrated with cultured cells. Once placed into the artery, these grafts may become colonised by host cells and gain many of the properties of normal artery. Tissue-engineered blood vessels may also be formed from layers of human vascular cells grown in culture. These engineered vessels have many of the characteristics of arteries formed in vivo. Artificial arteries may be also be derived from peritoneal granulation tissue in body bioreactors by adapting the body's natural wound healing response to produce a hollow tube. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fetal epithelium retains the ability to re-epithelialize a wound in organotypic culture in a manner not dependent on the presence of underlying dermal substrata. This capacity is lost late in the third trimester of gestation or after embryonic day 17 (E-17) in the rat such that embryonic day 19 (E-19) wounds do not re-epithelialize. Moreover, wounds created in E-17 fetuses in utero heal in a regenerative, scar-free fashion. To investigate the molecular events regulating re-epithelialization in fetal skin, the wound-induced expression profile and tissue localization of activator protein 1 (AP-1) transcription factors c-Fos and c-Jun was characterised in E-17 and E-19 skin using organotypic fetal cultures. The involvement of mitogen-activated protein kinase (MAPK) signaling in mediating wound-induced transcription factor expression and wound re-epithelialization was assessed, with the effect of wounding on the expression of keratinocyte differentiation markers determined. Our results show that expression of AP-1 transcription factors was induced immediately by wounding and localized predominantly to the epidermis in E-17 and E-19 skin. c-fos and c-jun induction was transient in E-17 skin with MAPK-dependent c-fos expression necessary for the re-epithelialization of an excisional wound in organotypic culture. In E-19 skin, AP-11 expression persisted beyond 12 h post-wounding, and marked upregulation of the keratinocyte differentiation markers keratin 10 and loricrin was observed. No such changes in the expression of keratin 10 or loricrin occurred in E-17 skin. These findings indicate that re-epithelialization in fetal skin is regulated by wound-induced AP-1 transcription factor expression via MAPK and the differentiation status of keratinocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The purpose of the present study was to compare the effectiveness of three burns dressings (TransCyte, a bio-engineered skin substitute; Biobrane; and Silvazine cream (silver sulphadiazine and 0.2% chlorhexidine)), in treating children with partial-thickness burns. The primary objective was to determine the days until greater than or equal to90% re-epithelialization. The secondary objectives were to evaluate the number of wounds requiring autografting and the number of dressing changes/local wound care required. Methods: Study wounds were identified on each patient and the patients were randomized to receive TransCyte or Biobrane or Silvazine. Assessment of study wound closure began at 2 days after treatment and continued at least every other day thereafter until the wounds re-epithelialized or were autografted. A laser Doppler imaging system was used as an adjunct to assessing the depth of the burn. Results: Thirty-three patients with 58 wound sites enrolled in the study (TransCyte, n = 20, Biobrane, n = 17; Silvazine, n = 21). Mean time to re-epithelialization was 7.5 days for TransCyte, 9.5 days for Biobrane, and 11.2 days for Silvazine. The number of wounds requiring autografting were 5/21 (24%) for Silvazine, 3/17 (17%) for Biobrane, and 1/20 (5%) for TransCyte. Conclusions: When used in partial-thickness burns in children, TransCyte promotes fastest re-epithelialization and required less overall dressings then Biobrane or Silvazine. Patients who received Silvazine or Biobrane require more autografting than those treated with TransCyte.