942 resultados para water quality model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical models for heated water outfalls were developed for three flow regions. Near the source, the subsurface discharge into a stratified ambient water issuing from a row of buoyant jets was solved with the jet interference included in the analysis. The analysis of the flow zone close to and at intermediate distances from a surface buoyant jet was developed for the two-dimensional and axisymmetric cases. Far away from the source, a passive dispersion model was solved for a two dimensional situation taking into consideration the effects of shear current and vertical changes in diffusivity. A significant result from the surface buoyant jet analysis is the ability to predict the onset and location of an internal hydraulic jump. Prediction can be made simply from the knowledge of the source Froude number and a dimensionless surface exchange coefficient. Parametric computer programs of the above models are also developed as a part of this study. This report was submitted in fulfillment of Contract No. 14-12-570 under the sponsorship of the Federal Water Quality Administration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several agencies in the United Kingdom have interest in the water quality of old navigational canals that have fallen into disuse after the decline of commercial canal transportation. The interested agencies desired a model to predict the water quantity and quality of inland navigational canals in order to evaluate management options to address the issues in the natural streams to which they discharge. Inland navigational canals have unique drivers of their hydrology and water quality compared to either natural streams, irrigation canals, or larger navigational canals connected to seas or oceans. Water in an inland canal is typically sourced from a reservoir and artificially pumped to a summit reach; its movement downhill is controlled by the activity of boats and overflow weirs. Stagnant impoundments between locks, which might normally be expected to result in a decrease in the concentration of sediment-associated pollutants, actually have surprisingly high levels of sediment due to boat traffic. Algal growth in the stagnant reach can be high. This paper describes a canal model developed to simulate hydrology and water quality in inland navigational canals. This model was successfully applied to the Kennet and Avon Canal to predict hydrology, sediment generation and transport, and algal growth and transport. The model is responsive to external influences such as sunlight, temperature, nutrient concentrations, boat traffic, and runoff from the contributing catchment area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model to estimate the mean monthly growth of Crassostrea virginica oysters in Chesapeake Bay was developed. This model is based on the classic von Bertalanffy growth function, however the growth constant is changed every monthly timestep in response to short term changes in temperature and salinity. Using a dynamically varying growth constant allows the model to capture seasonal oscillations in growth, and growth responses to changing environmental conditions that previous applications of the von Bertalanffy model do not capture. This model is further expanded to include an estimation of Perkinsus marinus impacts on growth rates as well as estimations of ecosystem services provided by a restored oyster bar over time. The model was validated by comparing growth estimates from the model to oyster shell height observations from a variety of restoration sites in the upper Chesapeake Bay. Without using the P. marinus impact on growth, the model consistently overestimates mean oyster growth. However, when P. marinus effects are included in the model, the model estimates match the observed mean shell height closely for at least the first 3 years of growth. The estimates of ecosystem services suggested by this model imply that even with high levels of mortality on an oyster reef, the ecosystem services provided by that reef can still be maintained by growth for several years. Because larger oyster filter more water than smaller ones, larger oysters contribute more to the filtration and nutrient removal ecosystem services of the reef. Therefore a reef with an abundance of larger oysters will provide better filtration and nutrient removal. This implies that if an oyster restoration project is trying to improve water quality through oyster filtration, it is important to maintain the larger older oysters on the reef.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutrient loss from agricultural land following organic fertilizer spreading can lead to eutrophication and poor water quality. The risk of pollution is partly related to the soil water status during and after spreading. In response to these issues, a decision support system (DSS) for nutrient management has been developed to predict when soil and weather conditions are suitable for slurry spreading. At the core of the DSS, the Hybrid Soil Moisture Deficit (HSMD) model estimates soil water status relative to field capacity (FC) for three soil classes (well, moderately and poorly drained) and has potential to predict the occurrence of a transport vector when the soil is wetter than FC. Three years of field observation of volumetric water content was used to validate HSMD model predictions of water status and to ensure correct use and interpretation of the drainage classes. Point HSMD model predictions were validated with respect to the temporal and spatial variations in volumetric water content and soil strength properties. It was found that the HSMD model predictions were well related to topsoil water content through time, but a new class intermediate between poor and moderate, perhaps ‘imperfectly drained’, was needed. With correct allocations of a field into a drainage class, the HSMD model predictions reflect field scale trends in water status and therefore the model is suitable for use at the core of a DSS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrate and urban waste water directives have raised the need for a better understanding of coastal systems in European Union. The incorrect application of these directives can lead to important ecological or social penalties. In the paper this problem is addressed to Ria Formosa Coastal Lagoon. Ria Formosa hosts a Natural Park, important ports of the southern Portuguese coast and significant bivalve aquaculture activity. Four major urban waste water treatment plants discharging in the lagoon are considered in this study. Its treatment level must be selected, based on detailed information from a monitoring program and on a good knowledge of the processes determining the fate of the material discharged in the lagoon. In this paper the results of a monitoring program and simulations using a coupled hydrodynamic and water quality / ecological model, MOHID, are used to characterise the system and to understand the processes in Ria Formosa. It is shown that the water residence time in most of the lagoon is quite low, of the order of days, but it can be larger in the upper parts of the channels where land generated water is discharged. The main supply of nutrients to the lagoon comes from the open sea rather than from the urban discharges. For this reason the characteristics and behaviour of the general lagoon contrasts with the behaviour of the upper reaches of the channels where the influence of the waste water treatment plants are high. In this system the bottom mineralization was found to be an important mechanism, and the inclusion of that process in the model was essential to obtain good results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An intercomparison study is carried out between two models with different formulations and spatial discretizations in order to overcome the limitations posed by the standard calibration and validation procedures and improve confidence in the hydrodynamic results for the Patos Lagoon. Numerical simulations were carried out applying the TELEMAC and MOHID models, based on the same boundary conditions and identical calibration coefficients so differences in calculated flow conditions result from the formulations and parameterizations of each model. Results from both models are compared with measurements from three stations inside the lagoon. Preliminary results indicate that both models compare well with the measurements and with each other. These results increase the confidence on hydrodynamic results for the Patos Lagoon and provide the first step towards water quality studies for the area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese dout., Ciências e Tecnologias do Ambiente, Universidade do Algarve, 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation has as its goal the quantitative evaluation of the application of coupled hydrodynamic, ecological and clarity models, to address the deterministic prediction of water clarity in lakes and reservoirs. Prediction of water clarity is somewhat unique, insofar as it represents the integrated and coupled effects of a broad range of individual water quality components. These include the biological components such as phytoplankton, together with the associated cycles of nutrients that are needed to sustain their popuiations, and abiotic components such as suspended particles that may be introduced by streams, atmospheric deposition or sediment resuspension. Changes in clarity induced by either component will feed back on the phytoplankton dynamics, as incident light also affects biological growth. Thus ability to successfully model changes in clarity will by necessity have to achieve the correct modeling of these other water quality parameters. Water clarity is also unique in that it may be one of the earliest and most easily detected wamings of the acceleration of the process of eutrophication in a water body.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The INtegrated CAtchment (INCA) model has been developed to simulate the impact of mine discharges on river systems. The model accounts for the key kinetic chemical processes operating as well as the dilution, mixing and redistribution of pollutants in rivers downstream of mine discharges or acid rock drainage sites. The model is dynamic and simulates the day-to-day behaviour of hydrology and eight metals (cadmium, mercury, copper, zinc, lead, arsenic, manganese and chromium) as well as cyanide and ammonia. The model is semi-distributed and can simulate catchments, sub-catchment and in-stream river behaviour. The model has been applied to the Roia Montan Mine in Transylvania, Romania, and used to assess the impacts of old mine adits on the local catchments as well as on the downstream Aries and Mures river system. The question of mine restoration is investigated and a set of clean-up scenarios investigated. It is shown that the planned restoration will generate a much improved water quality from the mine and also alleviate the metal pollution of the river system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are now considerable expectations that semi-distributed models are useful tools for supporting catchment water quality management. However, insufficient attention has been given to evaluating the uncertainties inherent to this type of model, especially those associated with the spatial disaggregation of the catchment. The Integrated Nitrogen in Catchments model (INCA) is subjected to an extensive regionalised sensitivity analysis in application to the River Kennet, part of the groundwater-dominated upper Thames catchment, UK The main results are: (1) model output was generally insensitive to land-phase parameters, very sensitive to groundwater parameters, including initial conditions, and significantly sensitive to in-river parameters; (2) INCA was able to produce good fits simultaneously to the available flow, nitrate and ammonium in-river data sets; (3) representing parameters as heterogeneous over the catchment (206 calibrated parameters) rather than homogeneous (24 calibrated parameters) produced a significant improvement in fit to nitrate but no significant improvement to flow and caused a deterioration in ammonium performance; (4) the analysis indicated that calibrating the flow-related parameters first, then calibrating the remaining parameters (as opposed to calibrating all parameters together) was not a sensible strategy in this case; (5) even the parameters to which the model output was most sensitive suffered from high uncertainty due to spatial inconsistencies in the estimated optimum values, parameter equifinality and the sampling error associated with the calibration method; (6) soil and groundwater nutrient and flow data are needed to reduce. uncertainty in initial conditions, residence times and nitrogen transformation parameters, and long-term historic data are needed so that key responses to changes in land-use management can be assimilated. The results indicate the general, difficulty of reconciling the questions which catchment nutrient models are expected to answer with typically limited data sets and limited knowledge about suitable model structures. The results demonstrate the importance of analysing semi-distributed model uncertainties prior to model application, and illustrate the value and limitations of using Monte Carlo-based methods for doing so. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stream-water flows and in-stream nitrate and ammonium concentrations in a small (36.7 ha) Atlantic Forest catchment were simulated using the Integrated Nitrogen in CAtchments (INCA) model version 1.9.4. The catchment, at Cunha, is in the Serra do Mar State Park, SE Brazil and is nearly pristine because the nearest major conurbations, Sao Paulo and Rio, are some 450 km distant. However, intensive farming may increase nitrogen (N) deposition and there are growing pressures for urbanisation. The mean-monthly discharges and NO3-N concentration dynamics were simulated adequately for the calibration and validation periods with (simulated) loss rates of 6.55 kg.ha(-1) yr(-1) for NO3-N and 3.85 kg.ha(-1) yr(-1) for NH4-N. To investigate the effects of elevated levels of N deposition in the future, various scenarios for atmospheric deposition were simulated; the highest value corresponded to that in a highly polluted area of Atlantic Forest in Sao Paulo City. It was found that doubling the atmospheric deposition generated a 25% increase in the N leaching rate, while at levels approaching the highly polluted Sao Paulo deposition rate, five times higher than the current rate, leaching increased by 240%, which would create highly eutrophic conditions, detrimental to downstream water quality. The results indicate that the INCA model can be useful for estimating N concentration and fluxes for different atmospheric deposition rates and hydrological conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (∼10–100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface‐subsurface interactions due to fine‐scale topography and vegetation; improved representation of land‐atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a “grand challenge” to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the development of an export coefficient model to characterise the rates and sources of P export from land to water in four reservoir systems located in a semi-arid rural region in southern of Portugal. The model was developed to enable effective management of these important water resource systems under the EU Water Framework Directive. This is the first time such an approach has been fully adapted for the semi-arid systems typical of Mediterranean Europe. The sources of P loading delivered to each reservoir from its catchment were determined and scenario analysis was undertaken to predict the likely impact of catchment management strategies on the scale of rate of P loading delivered to each water body from its catchment. The results indicate the importance of farming and sewage treatment works/collective septic tanks discharges as the main contributors to the total diffuse and point source P loading delivered to the reservoirs, respectively. A reduction in the total P loading for all study areas would require control of farming practices and more efficient removal of P from human wastes prior to discharge to surface waters. The scenario analysis indicates a strategy based solely on reducing the agricultural P surplus may result in only a slow improvement in water quality, which would be unlikely to support the generation of good ecological status in reservoirs. The model application indicates that a reduction of P-inputs to the reservoirs should first focus on reducing P loading from sewage effluent discharges through the introduction of tertiary treatment (P-stripping) in all major residential areas. The fully calibrated export coefficient modelling approach transferred well to semi-arid regions, with the only significant limitation being the availability of suitable input data to drive the model. Further studies using this approach in semi-arid catchments are now needed to increase the knowledge of nutrient export behaviours in semi-arid regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital elevation model (DEM) plays a substantial role in hydrological study, from understanding the catchment characteristics, setting up a hydrological model to mapping the flood risk in the region. Depending on the nature of study and its objectives, high resolution and reliable DEM is often desired to set up a sound hydrological model. However, such source of good DEM is not always available and it is generally high-priced. Obtained through radar based remote sensing, Shuttle Radar Topography Mission (SRTM) is a publicly available DEM with resolution of 92m outside US. It is a great source of DEM where no surveyed DEM is available. However, apart from the coarse resolution, SRTM suffers from inaccuracy especially on area with dense vegetation coverage due to the limitation of radar signals not penetrating through canopy. This will lead to the improper setup of the model as well as the erroneous mapping of flood risk. This paper attempts on improving SRTM dataset, using Normalised Difference Vegetation Index (NDVI), derived from Visible Red and Near Infra-Red band obtained from Landsat with resolution of 30m, and Artificial Neural Networks (ANN). The assessment of the improvement and the applicability of this method in hydrology would be highlighted and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drinking water distribution networks risk exposure to malicious or accidental contamination. Several levels of responses are conceivable. One of them consists to install a sensor network to monitor the system on real time. Once a contamination has been detected, this is also important to take appropriate counter-measures. In the SMaRT-OnlineWDN project, this relies on modeling to predict both hydraulics and water quality. An online model use makes identification of the contaminant source and simulation of the contaminated area possible. The objective of this paper is to present SMaRT-OnlineWDN experience and research results for hydraulic state estimation with sampling frequency of few minutes. A least squares problem with bound constraints is formulated to adjust demand class coefficient to best fit the observed values at a given time. The criterion is a Huber function to limit the influence of outliers. A Tikhonov regularization is introduced for consideration of prior information on the parameter vector. Then the Levenberg-Marquardt algorithm is applied that use derivative information for limiting the number of iterations. Confidence intervals for the state prediction are also given. The results are presented and discussed on real networks in France and Germany.