940 resultados para waste water treatment plant


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A type of Nb(2)O(5)center dot 3H(2)O was synthesized and its phosphate removal potential was investigated in this study. The kinetic study, adsorption isotherm, pH effect, thermodynamic study and desorption were examined in batch experiments. The kinetic process was described by a pseudo-second-order rate model very well. The phosphate adsorption tended to increase with a decrease of pH. The adsorption data fitted well to the Langmuir model with which the maximum P adsorption capacity was estimated to be 18.36 mg-Pg(-1). The peak appearing at 1050 cm(-1) in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The positive values of both Delta H degrees and Delta S degrees suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. Delta G degrees values obtained were negative indicating a spontaneous adsorption process. A phosphate desorbability of approximately 68% was observed with water at pH 12, which indicated a relatively strong bonding between the adsorbed phosphate and the sorptive sites on the surface of the adsorbent. The immobilization of phosphate probably occurs by the mechanisms of ion exchange and physicochemical attraction. Due to its high adsorption capacity, this type of hydrous niobium oxide has the potential for application to control phosphorus pollution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A type of ZrO(2)center dot nH(2)O Was synthesized and its Cr(VI) removal potential was investigated in this study. The kinetic study, adsorption isotherm, pH effect, thermodynamic study and desorption were examined in batch experiments. The kinetic process was described by a pseudo-second-order rate model very well. The Cr(VI) adsorption tended to increase with a decrease of pH. The adsorption data fitted well to the Langmuir model. The adsorption capacity increased from 61 to 66 mg g(-1) when the temperature was increased from 298 to 338 K. The positive values of both Delta H degrees and Delta S degrees suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. Delta G degrees values obtained were negative indicating a spontaneous adsorption process. The effective desorption of Cr(VI) on ZrO(2)center dot nH(2)O could be achieved using distilled water at pH 12. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ammonium nitrogen removal from a synthetic wastewater by nitrification and denitrification processes were performed in a sequencing batch biofilm reactor containing immobilized biomass on polyurethane foam with circulation of the liquid-phase. It was analyzed the effect of four external carbon sources (ethanol, acetate, carbon synthetic medium and methanol) acting as electron donors in the denitrifying process. The experiments were conducted with intermittent aeration and operated at 30+/-1 degrees C in 8-h cycles. The synthetic wastewater (100 mgCOD/L and 50 mgNH(4)(+)-N/L) was added batch-wise, while the external carbon sources were added fed-batch-wise during the periods where aeration was suspended. Ammonium nitrogen removal efficiencies obtained were 95.7, 94.3 and 97.5% for ethanol, acetate and carbon synthetic medium, respectively. As to nitrite, nitrate and ammonium nitrogen effluent concentrations, the results obtained were, respectively: 0.1, 5.7 and 1.4 mg/L for ethanol; 0.2, 4.1 and 1.8 mg/L for acetate and 0.2, 6.7 and 0.8 for carbon synthetic medium. On the other hand using methanol, even at low concentrations (50% of the stoichiometric value calculated for complete denitrification), resulted in increasing accumulation of nitrate and ammonium nitrogen in the effluent over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 mu g PCP g(-1) VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l(-1) day(-1) for RI, and from 0.06 to 4.15 mg PCP l(-1) day(-1) for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m(-3) day(-1) at hydraulic retention times (HRT) of 24 h for R1 and 18 In for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two bench-scale horizontal anaerobic fixed bed reactors were tested to remove both sulfate and organic matter from wastewater. First, the reactors (R1 and R2) were supplied with synthetic wastewater containing sulfate and a solution of ethanol and volatile fatty acids. Subsequently, RI and R2 were fed with only ethanol or acetate, respectively. The substitution to ethanol in R1 increased the sulfate reduction efficiency from 83% to nearly 100% for a chemical oxygen demand to sulfate (COD/sulfate) ratio of 3.0. In contrast, in R2, the switch in carbon source to acetate strongly decreased sulfidogenesis and the maximum sulfate reduction achieved was 47%. Process stability in long-term experiments and high removal efficiencies of both organic matter and sulfate were achieved with ethanol as the sole carbon source. The results allow concluding that syntrophism instead of competition between the sulfate reducing bacteria and acetoclastic methanogenic archaeal populations prevailed in the reactor. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m(3) day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 + 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids, This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ Substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to analyze the interaction effects between temperature, feed strategy and COD/[SO(4)(2-)] levels, maintaining the same ratio, on sulfate and organic matter removal efficiency from a synthetic wastewater. This work is thus a continuation of Archilha et al. (2010) who studied the effect of feed strategy at 30 degrees C using different COD/[SO] ratios and levels. A 3.7-L anaerobic sequencing batch reactor with recirculation of the liquid phase and which contained immobilized biomass on polyurethane foam (AnSBBR) was used to treat 2.0 L synthetic wastewater in 8 h cycles. The temperatures of 15, 22.5 and 30 degrees C with two feed strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2 L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8 L (containing only the carbon source) in 240 min. Based on COD/[SO(4)(2-)] = 1 and on the organic matter (0.5 and 1.5 gCOD/L) and sulfate (0.5 and 1.5 gSO(4)(2-)/L) concentrations, the sulfate and organic matter loading rates applied were 1.5 and 4.5 g/L.d, i.e., same COD/[SO(4)(2-)] ratio (=1) but different levels (1.5/1.5 and 4.5/4.5 gCOD/gSO(4)(2-)). When reactor feed was 1.5 gCOD/L.d and 1.5 gSO(4)(2-)/L.d, gradual feeding (strategy b) showed to favor sulfate and organic matter removal in the investigated temperature range, indicating improved utilization of the electron donor for sulfate reduction. Sulfate removal efficiencies were 87.9; 86.3 and 84.4%, and organic matter removal efficiencies 95.2; 86.5 and 80.8% at operation temperatures of 30; 22.5 and 15 degrees C, respectively. On the other hand, when feeding was 4.5 gCOD/L.d and 4.5 gSO(4)(2-)/L.d, gradual feeding did not favor sulfate removal, indicating that gradual feeding of the electron donor did not improve sulfate reduction. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to study the operational feasibility of nitrification and denitrification processes in a mechanically stirred sequencing batch reactor (SBR) operated in batch and fed-batch mode. The reactor was equipped with a draft-tube to improve mass transfer and contained dispersed (aerobic) and granulated (anaerobic) biomass. The following reactor variables were adjusted: aeration time during the nitrification step; dissolved oxygen concentration, feed time defining batch and fed-batch phases, concentration of external carbon source used as electron donor during the denitrification stage and volumetric ammonium nitrogen load in the influent. The reactor (5 L volume) was maintained at 30 +/- 1 degrees C and treated either 1.0 or 1.5 L wastewater in 8-h cycles. Ammonium nitrogen concentrations assessed were: 50 (condition 1) and 100 mgN-NH(4)(+).L(-1) (condition 2), resulting in 29 and 67 mgN-NH(4)(+).L-1-d(-1), respectively. A synthetic medium and ethanol were used as external carbon sources (ECS). Total nitrogen removal efficiencies were 94.4 and 95.9% when the reactor was operated under conditions 1 and 2, respectively. Low nitrite (0.2 and 0.3 mgN-NO(2)(-).L(-1), respectively) and nitrate (0.01 and 0.3 mgN-NO(3)(-).L(-1), respectively) concentrations were detected in the effluent and ammonium nitrogen removal efficiencies were 97.6% and 99.6% under conditions 1 and 2, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes the influence of carbon source and inoculum origin on the dynamics of biomass adhesion to an inert support in anaerobic reactors fed with acid mine drainage. Formic acid, lactic acid and ethanol were used as carbon sources. Two different inocula were evaluated: one taken from an UASB reactor and other from the sediment of a uranium mine. The values of average colonization rates and the maximum biomass concentration (C(max)) were inversely proportional to the number of carbon atoms in each substrate. The highest C(max) value (0.35 g TVS g(-1) foam) was observed with formic acid and anaerobic sludge as inoculum. Maximum colonization rates (v(max)) were strongly influenced by the type of inoculum when ethanol and lactic acid were used. For both carbon sources, the use of mine sediment as inoculum resulted in a v(max) of 0.013 g TVS g(-1) foam day(-1), whereas 0.024 g TVS g(-1) foam day(-1) was achieved with anaerobic sludge. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated hydrogen production in an anaerobic fluidized bed reactor (AFBR) fed with glucose-based synthetic wastewater. Particles of expanded clay (2.8-3.35 mm) were used as a support material for biomass immobilization. The reactor was operated with hydraulic retention times (HRT) ranging from 8 to 1 h. The hydrogen yield production increased from 1.41 to 2.49 mol H(2) Mol(-1) glucose as HRT decreased from 8 to 2 h. However, when HRT was 1 h, there was a slight decrease to 2.41 mol H(2) Mol(-1) glucose. The biogas produced was composed of H(2) and CO(2), and the H(2) content increased from 8% to 35% as HRT decreased. The major soluble metabolites during H(2) fermentation were acetic acid (HAc) and butyric acid (HBu), accounting for 36.1-53.3% and 37.7-44.9% of total soluble metabolites, respectively. Overall, the results demonstrate the potential of using expanded clay as support material for hydrogen production in AFBRs. (c) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the microbial characteristics of the granular sludge in the presence of oxygen (3.0 +/- 0.7 mg O-2 1(-1)) were analyzed using molecular biology techniques. The granules were provided by an upflow anaerobic sludge blanket (UASB) operated over 469 days and fed with synthetic substrate. Ethanol and sulfate were added to obtain different COD/SO42- ratios (3.0, 2.0, and 1.6). The results of fluorescent in situ hybridization (FISH) analyses showed that archaeal cells, detected by the ARC915 probe, accounted for 77%, 84%, and 75% in the COD/SO42- ratios (3.0, 2.0, and 1.6, respectively). Methanosaeta sp. was the predominant acetoclastic archaea observed by optical microscopy and FISH analyses, and confirmed by sequencing of the excised bands of the DGGE gel with a similarity of 96%. The sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris (similarity of 99%) was verified by sequencing of the DGGE band. Others identified microorganism were similar to Shewanella sp. and Desulfitobacterium hafniense, with similarities of 95% and 99%, respectively. These results confirmed that the presence of oxygen did not severely affect the metabolism of microorganisms that are commonly considered strictly anaerobic. We obtained mean efficiencies of organic matter conversion and sulfate reducing higher than 74%. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A laboratory scale activated sludge sequencing batch reactor was operated in order to obtain total removal of influent ammonia (200; 300 and 500 mg NH(3)-N.L(-1)) with sustained nitrite accumulation at the end of the aerobic stages with phenol (1,000 mg C(6)H(5)OH.L(-1)) as the carbon source for denitrifying microorganisms during the anoxic stages. Ammonia removal above 95% and ratios of (NO(2)(-)-N / (NO(2)(-)-N + NO(3)(-)-N)) ranging from 89 to 99% were obtained by controlling the dissolved oxygen concentration (1.0 mg O(2).L(-1)) and the pH value of 8.3 during the aerobic stages. Phenol proved to be an adequate source of carbon for nitrogen removal via nitrite with continuous feeding throughout part of the anoxic stage. Nitrite concentrations greater than 70.0 mg NO(2)(-)-N.L(-1) inhibited the biological denitritation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is the study of batch liquid-liquid extraction of phenol from aqueous solutions in a bench-scale well-mixed reactor. The influence of the ratio of phase volumes, temperature, and rotational speed on phenol removal (0.72-1.1% w/w) was investigated using methyl isobutyl ketone as an extracting solvent. For this purpose, the ratio of phase volumes were set at 0.1 and 0.2, the temperature at 10, 20, and 30 degrees C, and the rotational speed at 300, 400, and 500 rpm. A physical model based on the material balance of the phases as well as the equation of mass flux between the phases allowed the estimation of the overall coefficient of mass transfer coupled with the superficial area. Moreover, it proved to fit, satisfactorily well, the experimental data of residual phenol concentration in the organic phase versus time under all the conditions investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing need to treat effluents contaminated with phenol with advanced oxidation processes (AOPs) to minimize their impact on the environment as well as on bacteriological populations of other wastewater treatment systems. One of the most promising AOPs is the Fenton process that relies on the Fenton reaction. Nevertheless, there are no systematic studies on Fenton reactor networks. The objective of this paper is to develop a strategy for the optimal synthesis of Fenton reactor networks. The strategy is based on a superstructure optimization approach that is represented as a mixed integer non-linear programming (MINLP) model. Network superstructures with multiple Fenton reactors are optimized with the objective of minimizing the sum of capital, operation and depreciation costs of the effluent treatment system. The optimal solutions obtained provide the reactor volumes and network configuration, as well as the quantities of the reactants used in the Fenton process. Examples based on a case study show that multi-reactor networks yield decrease of up to 45% in overall costs for the treatment plant. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fruit-set in tomato (Solanum lycopersicum) depends on gibberellins and auxins (GAs). Here, we show, using the cv MicroTom, that application of N-1-naphthylphthalamic acid (NPA; an inhibitor of auxin transport) to unpollinated ovaries induced parthenocarpic fruit-set, associated with an increase of indole-3-acetic acid (IAA) content, and that this effect was negated by paclobutrazol (an inhibitor of GA biosynthesis). NPA-induced ovaries contained higher content of GA(1) (an active GA) and transcripts of GA biosynthetic genes (SlCPS, SlGA20ox1, and -2). Interestingly, application of NPA to pollinated ovaries prevented their growth, potentially due to supraoptimal IAA accumulation. Plant decapitation and inhibition of auxin transport by NPA from the apical shoot also induced parthenocarpic fruit growth of unpollinated ovaries. Application of IAA to the severed stump negated the plant decapitation effect, indicating that the apical shoot prevents unpollinated ovary growth through IAA transport. Parthenocarpic fruit growth induced by plant decapitation was associated with high levels of GA(1) and was counteracted by paclobutrazol treatment. Plant decapitation also produced changes in transcript levels of genes encoding enzymes of GA biosynthesis (SlCPS and SlGA20ox1) in the ovary, quite similar to those found in NPA-induced fruits. All these results suggest that auxin can have opposing effects on fruit-set, either inducing (when accumulated in the ovary) or repressing (when transported from the apical shoot) that process, and that GAs act as mediators in both cases. The effect of NPA application and decapitation on fruit-set induction was also observed in MicroTom lines bearing introgressed DWARF and SELF-PRUNING wild-type alleles.