945 resultados para vertical-cavity surface-emitting lasers (VCSELs)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Authigenic carbonates were recovered from several horizons between 0 and 52 mbsf in sediments that overlay the Blake Ridge Diapir on the Carolina Rise (Ocean Drilling Program [ODP] Site 996). Active chemosynthetic communities at this site are apparently fed by fluid conduits extending beneath a bottom-simulating reflector (BSR). Gas hydrates occur at several depth intervals in these near-surface sediments. The carbonate nodules are composed of rounded to subangular intraclasts and carbonate cemented mussel shell fragments. Electron microprobe and X-ray diffraction (XRD) investigations show that aragonite is the dominant authigenic carbonate. Authigenic aragonite occurs both as microcrystalline, interstitial cement, and as cavity-filling radial fibrous crystals. The d13C values of the authigenic aragonite vary between -48.4 per mil and -30.5 per mil (Peedee belemnite [PDB]), indicating that carbon derived from 13C-depleted methane is incorporated into these carbonates. The d13C of pore water sum CO2 values are most negative in the upper 10 mbsf, near the sediment/water interface (-38 per mil ± 5 per mil), but noticeably more positive below 25 mbsf (+5 per mil ± 6 per mil). Because carbonates derive their carbon from HCO3-, dissimilarities between the d13C values of carbonate precipitates recovered from greater than 10 mbsf and d13C values of the associated pore fluids suggests that these carbonates formed near the seafloor. Differences of about 1 per mil in the oxygen isotopic composition of carbonate precipitates from different depths are possibly related to changes in bottom-water conditions during glacial and interglacial time periods. Measurements of the strontium isotopic composition on 13 carbonate samples show 87Sr/86Sr values between 0.709125 and 0.709206 with a mean of 0.709165, consistent with the approximate age of their host sediment. Furthermore, the 87Sr/86Sr values of six pore-water samples from Site 996 vary between 0.709130 and 0.709204. The similarity of these values to seawater (87Sr/86Sr = 0.709175), and to 87Sr/86Sr values of pore water from similar sample depths elsewhere on the Blake Ridge (Sites 994, 995, and 997), indicates a shallow Sr source. The 87Sr/86Sr values of the authigenic carbonates at Site 996 are not consistent with the Sr isotopic values predicted for carbonates precipitated from fluids transported upward along fault conduits extending through the base of the gas hydrate-stability zone. Based on our data, we see no evidence of continuing carbonate diagenesis with depth. Therefore, with the exception of their seafloor expression as carbonate crusts, fossil vent sites will not be preserved. Because these authigenic features apparently form only at the seafloor, their vertical distribution and sediment age imply that seepage has been going on in this area for at least 600,000 yr.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrations of dissolved organic carbon (DOC) and nitrogen (DON) were measured during early austral Spring 1992 at a number of stations along the 6°W meridian between 47° and 60°S. This included the Polar Front in the north, the zone of melting sea-ice in the south, and waters of the Antarctic Circumpolar Current in between. Concentrations of DOC were low in deep water (34-38 ?M) with generally similar or slightly higher values in the surface mixed layer (38-55 ?M). DOC:DON ratios are wider in surface water than in deep water, i.e. surface accumulations contain relatively C-rich dissolved organic matter. The highly variable distribution of the surface DOC was not related to hydrographic or biotic features (fronts, plankton development) indicating the lability and transient occurrence of this material. Growth rates of bacteria were determined in subsamples from 51 0.8-?m-filtered batches of seawater incubated in the dark at in-situ temperature. Thymidine and leucine uptake and bacterial biomass change as well as changes in dissolved organic carbon in the batches, and oxygen consumption in parallel incubations correlated linearly over 2 weeks of incubation which allowed extrapolation to in-situ conditions. Bacterial growth in these experiments depended strongly on the amount of initial DOC. Growth in water from greater depth (1000 m) containing 38 ?M DOC was minimal, as were DOC-decrease and oxygen consumption. Higher rates were observed in surface water slightly enriched with DOC, and highest rates in surface water amended with DOC-rich melted sea ice. Bacterial growth efficiencies (biomass C-increase vs DOC consumed) were about 30%. The experiments showed that at least 40-60% of the DOC in excess of deep water concentrations was available to bacteria.