986 resultados para trap mass-spectrometer
Resumo:
Early diagenetic dolomite beds were sampled during the Ocean Drilling Programme (ODP) Leg 201 at four reoccupied ODP Leg 112 sites on the Peru continental margin (Sites 1227/684, 1228/680, 1229/681 and 1230/685) and analysed for petrography, mineralogy, d13C, d18O and 87Sr/86Sr values. The results are compared with the chemistry, and d13C and 87Sr/86Sr values of the associated porewater. Petrographic relationships indicate that dolomite forms as a primary precipitate in porous diatom ooze and siliciclastic sediment and is not replacing the small amounts of precursor carbonate. Dolomite precipitation often pre-dates the formation of framboidal pyrite. Most dolomite layers show 87Sr/86Sr-ratios similar to the composition of Quaternary seawater and do not indicate a contribution from the hypersaline brine, which is present at a greater burial depth. Also, the d13C values of the dolomite are not in equilibrium with the d13C values of the dissolved inorganic carbon in the associated modern porewater. Both petrography and 87Sr/86Sr ratios suggest a shallow depth of dolomite formation in the uppermost sediment (<30 m below the seafloor). A significant depletion in the dissolved Mg and Ca in the porewater constrains the present site of dolomite precipitation, which co-occurs with a sharp increase in alkalinity and microbial cell concentration at the sulphate-methane interface. It has been hypothesized that microbial 'hot-spots', such as the sulphate-methane interface, may act as focused sites of dolomite precipitation. Varying d13C values from -15 per mil to +15 per mil for the dolomite are consistent with precipitation at a dynamic sulphate-methane interface, where d13C of the dissolved inorganic carbon would likewise be variable. A dynamic deep biosphere with upward and downward migration of the sulphate-methane interface can be simulated using a simple numerical diffusion model for sulphate concentration in a sedimentary sequence with variable input of organic matter. Thus, the study of dolomite layers in ancient organic carbon-rich sedimentary sequences can provide a useful window into the palaeo-dynamics of the deep biosphere.
Resumo:
The European Project for Ice Coring in Antarctica (EPICA) includes a comprehensive pre-site survey on the inland ice plateau of Dronning Maud Land. This paper focuses on the investigation of the 18O content of shallow firn and ice cores. These cores were dated by profiles derived from dielectric-profiling and continuous flow analysis measurements. The individual records were stacked in order to obtain composite chronologies of 18O contents and accumulation rates with enhanced signal-to-noise variance ratios.These chronologies document variations in the last 200 and 1000 years.The 18O contents and accumulation rates decreased in the 19th century and increased during the 20th century.Using the empirical relationships between stable isotopes, accumulation rates and the 10m firn temperature, the variation of both parameters can be explained by the same temperature history.But other causes for these variations, such as the build-up of the snow cover, cannot be excluded. A marked feature of the 1000 year chronology occurs during the period AD 1180-1530 when the 18O contents remains below the long-term mean. Cross-correlation analyses between five cores from the Weddell Sea region and Dronning Maud Land show that 18O records can in some periods be positively correlated and in others negatively correlated, indicating a complex climatic history in time and space.
Resumo:
A sedimentary sequence documenting the early history of the proto-Indian Ocean was drilled at Site 761 on the Wombat Plateau, northwest Australia. Directly above the post-rift unconformity, two lithologic units were recovered which reflect deposition in incipient oceanic environments. The lower unit, composed of sandstone, contains abundant belemnites and a few lenses composed of low-diversity coccolith assemblages. The second unit, composed of chalk, contains abundant calcispheres, thoracospheres, low-diversity coccolith assemblages, and a few radiolarians. Belemnites and organisms that produced calcispheres and thoracospheres are thought to be opportunistic. Their abundance, and the absence of a normal marine fauna and flora, reflects an unstable early ocean environment. Stable oxygen and carbon isotopic data for the two units fall into almost separate fields. Heavy delta18O values for the belemnites indicate that they have not been affected by recrystallization. Instead, these isotopic values are thought to indicate either the deep, cool habitat of the belemnites or strong vital effects. A bulk chalk delta18O value from the belemnite sand is 3 to 4 parts per mil lighter than the belemnite delta18O values, possibly because it is largely composed of coccoliths which inhabited warmer surface waters. Light delta13C values for bulk calcisphere-bearing nannofossil chalk samples are thought to be a direct result of upwelling or of vital effects. Heavy delta18O values for the chalk unit are interpreted as resulting from upwelling of cool waters. Assemblage and isotopic data are consistent with this incipient ocean basin being highly productive, either as a result of upwelling or runoff of nutrient-rich waters from nearby land areas. However, it is not possible to rule out the control of vital effects on the isotopic signature of any of the fossil groups.
Resumo:
A taxonomic and biostratigraphic investigation has been carried out on Upper Triassic (Carnian-Rhaetian) nannofossils from Sites 759, 760, 761 and 764 drilled on the Wombat Plateau during ODP Leg 122. The recovery of continuous sequences containing well preserved nannofossils has enabled us to refine the previous taxonomy and biostratigraphy of this interval. Fossil assemblages are of two major types: (1) previously described calcareous taxa were recovered at Sites 761 and 764; and (2) sideritic forms, which may represent diagenetic replacement of calcareous nannofossils, were observed in material from Sites 759 and 760. The sideritic forms proved difficult to study taxonomically due to inadequate optical properties. Calcareous nannofossil assemblages in the Upper Triassic are dominated by Prinsiosphaera triassica. We show that the multitude of identities of this species in the light microscope are the result of selective etching on a layered structure. We propose an evolutionary lineage for the earliest known coccoliths, with Crucirhabdus primulus as the ancestor. This species gave rise to C. minutus and Archaeozygodiscus koessenensis. The Upper Triassic can be subdivided based on the sequential first occurrences of C. primulus and Eoconusphaera zlambachensis in the upper Norian. The late Norian and Rhaetian were times of slow evolution of calcareous nannofossils. However, we noted three morphometric changes in this time-interval which possess biostratigraphic utility: (1) P. triassica increases in diameter from an average of 6 µm to over 9 µm; (2) E. zlambachensis evolves from a stubby to an elongated shape; and (3) C. primulus increases in size. Upper Triassic assemblages from the Wombat Plateau are similar in composition and diversity to those which have been described in detail from the Alps. In both areas, nannofossiliferous sediments interfinger with massive limestones deposited in reef and peri-platform environments. Stable isotopic analyses of Wombat Plateau nannofossil assemblages indicate that they thrived in open ocean conditions. Biostratigraphy allows sequence chronostratigraphic interpretation of ODP Site 761 and supports the chronostratigraphic cycle charts of Haq et al. (1987).
Resumo:
The delta13C and Cd measurements from benthic foraminifera from Biogeochemical Ocean Flux Study (BOFS) northeast Atlantic Ocean sediment cores are presented. The delta13C values in glacial foraminifera are consistent with those from elsewhere in the North Atlantic Ocean. For intermediate water (1000 - 2000 m water depth), delta13C values were higher at the last glacial maximum than in present North Atlantic Deep Water (NADW), whereas for deep water (>2000 m) they were lower during the glacial maximum. The Cd concentrations of glacial northeast Atlantic intermediate water were lower than those of present NADW. However, deepwater Cd concentrations increased to values between NADW and present Pacific Deep Water (PDW). The delta13C and Cd data are consistent and show that the northeast Atlantic Ocean was strongly stratified with 13C enriched, low Cd intermediate water overlying 13C depleted, high Cd deep water. The glacial water column comprised two different water masses: deep water, similar in character to present Antarctic Bottom Water (AABW), and intermediate water, different in character from both AABW and NADW, and any present intermediate-depth North Atlantic water. The characteristics of glacial intermediate water were, however, similar to present near-surface waters in the North Atlantic, which suggests rapid ventilation of the glacial ocean to depths of up to 2000 m by cold, nutrient-depleted young surface waters.
Resumo:
Benthic foraminiferal stable isotope records for the past 11 Myr from a recently drilled site in the sub-Antarctic South Atlantic (Site 1088, Ocean Drilling Program Leg 177, 41°S, 15°E, 2082 m water depth) provide, for the first time, a continuous long-term perspective on deep water distribution patterns and Southern Ocean climate change from the late Miocene through the early Pliocene. I have compiled published late Miocene through Pliocene stable isotope records to place the new South Atlantic record in a global framework. Carbon isotope gradients between the North Atlantic, South Atlantic, and Pacific indicate that a nutrient-depleted watermass, probably of North Atlantic origin, reached the sub-Antarctic South Atlantic after 6.6 Ma. By 6.0 Ma the relative proportion of the northern-provenance watermass was similar to today and by the early Pliocene it had increased to greater than the modern proportion suggesting that thermohaline overturn in the Atlantic was relatively strong prior to the early Pliocene interval of inferred climatic warmth. Site 1088 oxygen isotope values display a two-step increase between ~7.4 Ma and 6.9 Ma, a trend that parallels a published delta18O record of a site on the Atlantic coast of Morocco. This is perhaps best explained by a gradual cooling of watermasses that were sinking in the Southern Ocean. I speculate that relatively strong thermohaline overturn at rates comparable to the present day interglacial interval during the latest Miocene may have provided the initial conditions for early Pliocene climatic warmth. The impact of an emerging Central American Seaway on Atlantic-Pacific Ocean upper water exchange may have been felt in the North Atlantic beginning in the latest Miocene between 6.6 and 6.0 Ma, which would be ~1.5 Myr earlier than previously thought.
Resumo:
Drilling in the Caribbean Sea during Ocean Drilling Program Leg 165 has recovered a large number of silicic tephra layers and led to the discovery of three major episodes of explosive volcanism that occurred during the last 55 m.y. on the margins of this evolving ocean basin. The earliest episode is marked by Paleocene to early Eocene explosive volcanism on the Cayman Rise, associated with activity of the Cayman arc, an island arc that was the westward extension of the Sierra Maestra volcanic arc in southern Cuba. Caribbean sediments also document a major mid- to late Eocene explosive volcanic episode that is attributed to ignimbrite-forming eruptions on the Chortis Block in Central America to the west. This event is contemporaneous with the first phase of activity of the Sierra Madre volcanic episode in Mexico, the largest ignimbrite province on Earth. In the Caribbean sediments, a Miocene episode of explosive volcanism is comparable to the Eocene event, and also attributed to sources in the Central American arc to the west. Radiometric 40Ar/39Ar dates have been obtained for biotites and sanidines from 27 tephra layers, providing absolute ages for the volcanic episodes and further constraining the geochronology of Caribbean sediments. Volcanic activity of the Cayman arc is attributed to the northward subduction of the leading edge of the oceanic plate that carried the Caribbean oceanic plateau. Although the factors generating the large episodes of Central American explosive volcanism are unclear, we propose that they are related to contemporary major readjustments of plate tectonic configuration in the Pacific.
Resumo:
The Pacific Ocean is the largest water body on Earth, and circulation in the Pacific contributed significantly to climate evolution in the latest Cretaceous, the culmination of a period of long-term cooling. Here, we present new high-resolution late Campanian to Maastrichtian benthic and planktic foraminiferal stable isotope data and a neodymium (Nd) isotope record obtained from sedimentary ferromanganese oxide coatings of Ocean Drilling Program Hole 1210B from the tropical Pacific Ocean (Shatsky Rise). These new records resolve 13 million years in the latest Cretaceous, providing insights into changes in surface and bottom water temperatures and source regions of deep to intermediate waters covering the carbon isotope excursions of the Campanian-Maastrichtian Boundary Event (CMBE) and the Mid-Maastrichtian event (MME). Our new benthic foraminiferal d18O and Nd isotope records together with published Nd isotope data show markedly parallel trends across the studied interval over a broad range of bathyal to abyssal water depths interpreted to reflect changes in the intensity of deep-ocean circulation in the tropical Pacific. In particular, we observe a three-million-year-long period of cooler conditions in the early Maastrichtian (72.5 to 69.5 Ma) when a concomitant change toward less radiogenic seawater Nd isotope signatures probably marks a period of enhanced admixture and northward flow of deep waters with Southern Ocean provenance. We suggest this change to have been triggered by intensified formation and convection of deep waters in the high southern latitudes, a process that weakened during the MME (69.5 to 68.5 Ma). The early Maastrichtian cold interval is closely related to the negative and positive carbon isotope trends of the CMBE and MME. The millions-of-years long duration of these carbon cycle perturbations suggests a tectonic forcing of climatic cooling, possibly related to changes in ocean basin geometry and bathymetry.
Resumo:
Detailed analyses of the Lake Van pollen, Ca/K ratio and stable oxygen isotope record allow the identification of millennial-scale vegetation and environmental changes in eastern Anatolia throughout the last glacial (~75-15 ka BP). The climate within the last glacial was cold and dry, with low arboreal pollen (AP) levels. The driest and coldest period corresponds to Marine Isotope Stage (MIS) 2 (~28-14.5 ka BP) dominated by the highest values of xerophytic steppe vegetation. Our high-resolution multi proxy record shows rapid expansions and contractions of tree populations that reflects variability in temperature and moisture availability. This rapid vegetation and environmental changes can be linked to the stadial-interstadial pattern of the Dansgaard-Oeschger (DO) events as recorded in the Greenland ice cores. Periods of reduced moisture availability were characterized by enhanced xerophytic species and high terrigenous input from the Lake Van catchment area. Furthermore, comparison with the marine realm reveals that the complex atmosphere-ocean interaction can be explained by the strength and position of the westerlies, which is responsible for the supply of humidity in eastern Anatolia. Influenced by diverse topography of the Lake Van catchment, larger DO interstadials (e.g. DO 19, 17-16, 14, 12 and 8) show the highest expansion of temperate species within the last glacial. However, Heinrich events (HE), characterized by highest concentrations of ice-rafted debris (IRD) in marine sediments, are identified in eastern Anatolia by AP values not lower and high steppe components not more abundant than during DO stadials. In addition, this work is a first attempt to establish a continuous microscopic charcoal record over the last glacial in the Near East, which documents an initial immediate response to millennial-scale climate and environmental variability and enables us to shed light on the history of fire activity during the last glacial.
Resumo:
High-resolution delta18O records from the equatorial Pacific (site 503B), equatorial Atlantic (site 665A), and North Atlantic (site 606A) based on the benthic foraminifera Cibicidoides wuellerstorfi show the 2.4 Ma onset of major northern hemispheric glaciation to be a package of three events occurring at 2.39, 2.35, and 2.31 Ma in which a periodicity of about 40 kyr is evident. The amplitude of the signals at the three sites indicates that these events were 1/2 to 2/3 the size of the latest Quaternary glaciation and also indicates cooling of northern source bottom water by 2.7°-4.1°C relative to southern source water during glaciations. Carbon isotopes indicate that southern source waters were less oxygenated than in the Quaternary and that there was reduced production of northern source water during glacial intervals. The dominant presence of southern source water in the eastern basin of the equatorial Atlantic, regardless of climatic cycles, throughout the late Pliocene indicates a greater influence of these waters relative to northern source waters in the late Pliocene ocean.
Resumo:
Large changes in benthic foraminiferal delta180 and delta13C occurred during the Pliocene (between 3.0 and 2.0 Ma) at Hole 665A. Oxygen isotopic compositions increased to maximum values at 2.4 Ma, correlating with an 18O enrichment observed at Hole 552A and other locations (Shackleton et al., 1984). As at Hole 606 (Keigwin, 1986), however, maximum delta180 values at 2.4 Ma were not as great as at Hole 552A, and enrichments in delta180 also occurred before 2.4 Ma. We believe that the section representing sediments from 2.5 to 2.7 or 2.8 Ma is missing at Hole 552A because of incomplete core recovery. Consequently, the older delta180 increases are not found at Hole 552A. Benthic foraminiferal delta13C values are much lower at Hole 665A than at Hole 552A, approaching the low values observed in the Pliocene Pacific Ocean. This geographic distribution of delta13C suggests that, like late Quaternary glaciations, the equatorial Atlantic Ocean was dominated during the Pliocene by deep water that originated in the Southern Ocean and had chemical characteristics very similar to the Pacific Ocean. Reduced O2 values were probably associated with low delta13C values and contributed to increased preservation of organic carbon during enriched 180 intervals of the Pliocene equatorial Atlantic.
Resumo:
We have studied the sedimentary and basaltic inputs of lithium to subduction zones. Various sediments from DSDP and ODP drill cores in front of the Mariana, South Sandwich, Banda, East Sunda and Lesser Antilles island arcs have been analysed and show highly variable Li contents and d7Li values. The sediment piles in front of the Mariana and South Sandwich arcs largely consist of pelagic sediments (clays and oozes). The pelagic clays have high Li contents (up to 57.3 ppm) and Li isotope compositions ranging from +1.3? to +4.1?. The oozes have lower Li contents (7.3-16 ppm) with d7Li values of the diatom oozes from the South Sandwich lower (+2.8? to +3.2?) than those of the radiolarian oozes from the Mariana arc (+8.1? to +14.5?). Mariana sediment also contains a significant portion of volcanogenic material, which is characterised by a moderate Li content (14 ppm) and a relatively heavy isotope composition (+6.4?). Sediments from the Banda and Lesser Antilles contain considerable amounts of continental detritus, and have high Li contents (up to 74.3 ppm) and low d7Li values (around 0?), caused by weathering of continental bedrock. East Sunda sediments largely consist of calcareous oozes. These carbonate sediments display intermediate to high Li contents (2.4-41.9 ppm) and highly variable d7Li values (-1.6? to +12.8?). Basaltic oceanic crust samples from worldwide DSDP and ODP drill cores are characterised by enrichment of Li compared to fresh MORB (6.6-33.1 vs. 3.6-7.5 ppm, respectively), and show a large range in Li isotope compositions (+1.7? to +11.8?). The elemental and isotopic enrichment of Li in altered basalts is due to the uptake of isotopically heavy seawater Li during weathering. However, old oceanic crust samples from Sites 417/418 exhibit lighter Li isotope compositions compared to young basaltic crust samples from Sites 332B and 504B. This lighter Li isotope signature in old crust is unexpected and further research is needed to explore this issue.