991 resultados para transport simulation
Resumo:
Aquest projecte es centra en la realització d’un estudi de la mobilitat en diferents xarxes de transport públic. En particular, aquest estudi pretén ser una anàlisi comparativa de conceptes relacionats amb la topologia i navegabilitat de xarxes de metro de diferents països des d’un punt de vista innovador, tot realitzant una aproximació interdisciplinària a l’anàlisi de les xarxes.Es tracta d’un estudi centrat sobretot en conceptes i mètodes desenvolupats últimament en el camps de les Xarxes Complexes i de la Teoria de la Informació. Això ens ha permès focalitzar les nostres conclusions en les mesures de navegabilitat de les diferents xarxes així com en els paràmetres topològics que ens les defineixen, sense basar-nos en dades geogràfiques ni operatives. Els sistemes de metro estudiats en el present treball són els de Barcelona, Moscou, París i Nova York. Són sistemes que s’han desenvolupat en ambients històrics i culturals molt diversos fet que pot donar lloc a veure si aquesta circumstància és causant de diferències estructurals i de funcionament entre ells o bési pel contrari segueixen uns patrons de comportament semblants
Resumo:
The epithelial Na(+) channel (ENaC), located in the apical membrane of renal aldosterone-responsive epithelia, plays an essential role in controlling the Na(+) balance of extracellular fluids and hence blood pressure. As of now, ENaC is the only Na(+) transport protein for which genetic evidence exists for its involvement in the genesis of both hypertension (Liddle's syndrome) and hypotension (pseudohypoaldosteronism type 1). The regulation of ENaC involves a variety of hormonal signals (aldosterone, vasopressin, insulin), but the molecular mechanisms behind this regulation are mostly unknown. Two regulatory proteins have gained interest in recent years: the ubiquitin-protein ligase neural precursor cell-expressed, developmentally downregulated gene 4 isoform Nedd4-2, which negatively controls ENaC cell surface expression, and serum glucocorticoid-inducible kinase 1 (Sgk1), which is an aldosterone- and insulin-dependent, positive regulator of ENaC density at the plasma membrane. Here, we summarize present ideas about Sgk1 and Nedd4-2 and the lines of experimental evidence, suggesting that they act sequentially in the regulatory pathways governed by aldosterone and insulin and regulate ENaC number at the plasma membrane.
Resumo:
Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (G(brain)) as function of plasma glucose (G(plasma)) can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant K(t), apparent maximum rate constant T(max), glucose consumption rate CMR(glc), and the iso-inhibition constant K(ii) that suggests G(brain) as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where G(brain) was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by K(t) ranging from 1.5 to 3.5 mM, T(max)/CMR(glc) from 4.6 to 5.6, and K(ii) from 51 to 149 mM. It was noteworthy that K(t) was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by G(brain), predicting that G(brain) eventually approaches a maximum concentration. However, since K(ii) largely exceeds G(plasma), iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.
Resumo:
La dinàmica de fluids computacional (CFD) és una eina que serveix per analitzar mitjançantcomputadors diferents problemes que involucren fluxos de fluids. Els programes de CFD usen expressions matemàtiques no lineals que defineixen les equacions fonamentals de fluxos i transport de calor en fluids. Aquestes es resolen amb complexos algoritmes iteratius. Actualment aquesta eina és una part fonamental en els procés de disseny en moltes empreses relacionades amb la dinàmica de fluids. Les simulacions que es realitzen ambaquests programes s’ha demostrat que són fiables i que estalvien temps i diners, ja que eviten haver de realitzar els costosos processos d’assaig-error. En el projecte s’utilitza el programa de CFD Ansys CFX 11.0 per simular una agitació bifàsica composta per aigua i aire a temperatura ambient. Els objectius són determinar els paràmetres òptims de simulació que permetin recrear aquesta agitació, per posteriorment dissenyar un nou impulsor
Resumo:
Aquest projecte final de carrera pretén investigar i experimentar una nova línia de desenvolupament d’algorismes dinàmics. A partir de l’algorisme AntNet-QoS [2] s’ incorporen noves mesures a l’algorisme (mesura de l’amplada de banda disponible i jitter), les quals combinant amb la mesura de retard ja feta servir, permet adaptar-se millor a les condicions actuals del trànsit en la xarxa i als requeriments específics de qualitat (QoS) per part del trànsit
Resumo:
J. Neurochem. (2010) 10.1111/j.1471-4159.2010.06935.x Abstract Apart of its well known function of 'energetic buffer' through the creatine/phosphocreatine/creatine kinase system allowing the regeneration of ATP, creatine has been recently suggested as a potential neuromodulator of even true neurotransmitter. Moreover, the recent discovery of primary creatine deficiency syndromes, due to deficiencies in l-arginine : glycine amidinotransferase or guanidinoacetate methyltransferase (the two enzymes allowing creatine synthesis) or in the creatine transporter, has shed new light on creatine synthesis, metabolism and transport, in particular in CNS which appears as the main tissue affected by these creatine deficiencies. Recent data suggest that creatine can cross blood-brain barrier but only with a poor efficiency, and that the brain must ensure parts of its needs in creatine by its own endogenous synthesis. Finally, the recent years have demonstrated the interest to use creatine as a neuroprotective agent in a growing number of neurodegenerative diseases, including Parkinson's and Huntington's diseases. This article aims at reviewing the latest data on creatine metabolism and transport in the brain, in relation to creatine deficiencies and to the potential use of creatine as neuroprotective molecule. Emphasis is also given to the importance of creatine for cerebral function.
Resumo:
Référence bibliographique : Rol, 54854
Resumo:
The role of small, hydrophobic peptides that are associated with ion pumps or channels is still poorly understood. By using the Xenopus oocyte as an expression system, we have characterized the structural and functional properties of the gamma peptide which co-purifies with Na,K-ATPase. Immuno-radiolabeling of epitope-tagged gamma subunits in intact oocytes and protease protection assays show that the gamma peptide is a type I membrane protein lacking a signal sequence and exposing the N-terminus to the extracytoplasmic side. Co-expression of the rat or Xenopus gamma subunit with various proteins in the oocyte reveals that it specifically associates only with isozymes of Na,K-ATPase. The gamma peptide does not influence the formation and cell surface expression of functional Na,K-ATPase alpha-beta complexes. On the other hand, the gamma peptide itself needs association with Na,K-ATPase in order to be stably expressed in the oocyte and to be transported efficiently to the plasma membrane. Gamma subunits do not associate with individual alpha or beta subunits but only interact with assembled, transport-competent alpha-beta complexes. Finally, electrophysiological measurements indicate that the gamma peptide modulates the K+ activation of Na,K pumps. These data document for the first time the membrane topology, the specificity of association and a potential functional role for the gamma subunit of Na,K-ATPase.
Resumo:
In celiac disease, enhanced permeability to gliadin peptides can result from their apico-basal transport by secretory immunoglobulin A1 (SIgA1) binding to the CD71 receptor ectopically expressed at the gut epithelial surface. Herein, we have established a mouse model in which there is apico-basal transport of the model antigen ovalbumin (OVA) by specific SIgA1 and have analyzed local T-cell activation. Transgenic DO11.10 mice were grafted with a hybridoma-secreting OVA-specific humanized IgA1, which could bind mouse CD71 and which were released in the intestinal lumen as SIgA. CD71 expression was induced at the gut apical surface by treating the mice with tyrphostin A8. Following gavage of the mice with OVA, OVA-specific CD4(+) T cells isolated from the mesenteric lymph nodes displayed higher expression of the activation marker CD69 and produced more interferon gamma in mice bearing the hybridoma-secreting OVA-specific IgA1, than in ungrafted mice or in mice grafted with an irrelevant hybridoma. These results indicate that the protective role of SIgA1 might be jeopardized in human pathological conditions associated with ectopic expression of CD71 at the gut surface.
Resumo:
OBJECTIVES: Human papillomavirus (HPV) is a sexually transmitted infection of particular interest because of its high prevalence rate and strong causal association with cervical cancer. Two prophylactic vaccines have been developed and different countries have made or will soon make recommendations for the vaccination of girls. Even if there is a consensus to recommend a vaccination before the beginning of sexual activity, there are, however, large discrepancies between countries concerning the perceived usefulness of a catch-up procedure and of boosters. The main objective of this article is to simulate the impact on different vaccination policies upon the mid- and long-term HPV 16/18 age-specific infection rates. METHODS: We developed an epidemiological model based on the susceptible-infective-recovered approach using Swiss data. The mid- and long-term impact of different vaccination scenarios was then compared. RESULTS: The generalization of a catch-up procedure is always beneficial, whatever its extent. Moreover, pending on the length of the protection offered by the vaccine, boosters will also be very useful. CONCLUSIONS: To be really effective, a vaccination campaign against HPV infection should at least include a catch-up to early reach a drop in HPV 16/18 prevalence, and maybe boosters. Otherwise, the protection insured for women in their 20s could be lower than expected, resulting in higher risks to later develop cervical cancer.
Resumo:
The dynamic properties of helix 12 in the ligand binding domain of nuclear receptors are a major determinant of AF-2 domain activity. We investigated the molecular and structural basis of helix 12 mobility, as well as the involvement of individual residues with regard to peroxisome proliferator-activated receptor alpha (PPARalpha) constitutive and ligand-dependent transcriptional activity. Functional assays of the activity of PPARalpha helix 12 mutants were combined with free energy molecular dynamics simulations. The agreement between the results from these approaches allows us to make robust claims concerning the mechanisms that govern helix 12 functions. Our data support a model in which PPARalpha helix 12 transiently adopts a relatively stable active conformation even in the absence of a ligand. This conformation provides the interface for the recruitment of a coactivator and results in constitutive activity. The receptor agonists stabilize this conformation and increase PPARalpha transcription activation potential. Finally, we disclose important functions of residues in PPARalpha AF-2, which determine the positioning of helix 12 in the active conformation in the absence of a ligand. Substitution of these residues suppresses PPARalpha constitutive activity, without changing PPARalpha ligand-dependent activation potential.
Resumo:
Donateur : Aubry, Charles (1832-1900)