951 resultados para transparent ceramic
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: To analyze whether immersion in sodium fluoride (NaF) solutions and/or common acidic beverages (test solutions) would affect the surface roughness or topography of lithium disilicate ceramic. Methods: 220 ceramic discs were divided into four groups, each of which was subdivided into five subgroups (n = 11). Control group discs were immersed in one of four test beverages for 4 hours daily or in artificial saliva for 21 days. Discs in the experimental groups were continuously immersed in 0.05% NaF, 0.2% NaF, or 1.23% acidulated phosphate fluoride (APF) gel for 12, 73, and 48 hours, respectively, followed by immersion in one of the four test beverages or artificial saliva. Vickers microhardness, surface roughness, scanning electron microscopy (SEM) associated with energy dispersive spectroscopy, and atomic force microscopy (AFM) assessments were made. Data were analyzed by nested analysis of variance (ANOVA) and Tukey's test (alpha = 0.05). Results: Immersion in the test solutions diminished the microhardness and increased the surface roughness of the discs. The test beverages promoted a significant reduction in the Vickers microhardness in the 0.05% and 0.2% NaF groups. The highest surface roughness results were observed in the 0.2% NaF and 1.23% APF groups, with similar findings by SEM and AFM. Acidic beverages affected the surface topography of lithium disilicate ceramic. Fluoride treatments may render the ceramic surface more susceptible to the chelating effect of acidic solutions.
Resumo:
This study sought to evaluate the resin micro-tensile bond strength (MTBS) stability of a leucite-reinforced ceramic after different ceramic etching protocols. The microtensile test had 40 ceramic blocks (5x5x6 mm) assigned to five groups (n=8), in accordance with the following surface etching protocols: NE nonetched (control); 9HF: hydrofluoric (HF) acid etching (9% HF)+wash/dry; 4HF: 4%HF+wash/dry; 5HF: 5%HF+wash/dry; and 5HF+N: 5%HF+neutralizer+wash/dry+ultrasonic-cleaning. Etched ceramic surfaces were treated with a silane agent. Next, resin cement blocks were built on the prepared ceramic surface and stored for 24 hours in distilled water at 37 degrees C. The specimens were then sectioned to obtain microtensile beams (32/block), which were randomly assigned to the following conditions, nonaged (immediate test) and aged (water storage for 150 days plus 12,000 thermal cycles), before the microtensile test. Bond strength data were submitted to one-way analysis of variance and Tukey test (alpha=0.05). Additional ceramic samples were subjected to the different ceramic etching protocols and evaluated using a scanning electron microscope (n=2) and atomic force microscopy (n=2). Aging led to a statistically significant decrease in the MTBS for all groups, except the untreated one (NE). Among the groups submitted to the same aging conditions, the untreated (NE) revealed inferior MTBS values compared to the 9HF and 4HF groups. The 5HF and 5HF+N groups had intermediate mean values, being statistically similar to the higher values presented by the 9HF and 4HF groups and to the lower value associated with the NE group. The neutralization procedure did not enhance the ceramic/resin cement bond strength. HF acid etching is a crucial step in resin/ceramic bonding.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The greatest challenge of undergraduate engineering courses is to encourage creativity, cooperation with other students, teamwork, and motivation in the first years of their courses. While students have little or no contact with advanced disciplines, it is very difficult to attract their interests and encourage them to develop the skills in their undergraduate courses. This work aims to achieve these objectives through a mini-factory project involving the construction of a production line of ceramic tiles on a laboratory scale, from the ceramic processing using raw materials to the shipping of the final product. Having been given an established monthly demand for ceramic tiles, the students determined the construction requirements of the mini-factory, as they have created the layout, including the processing equipment, the dimensioning of equipment, and its operational structure. This article intends to describe the successful creation of the ceramic tile mini-factory, including the objectives, benefits, and inherent difficulties of the process and the receptivity of the exercise by the students involved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Statement of problem. Surface transformation with nonthermal plasma may be a suitable treatment for dental ceramics, because it does not affect the physical properties of the ceramic material.Purpose. The purpose of this study was to characterize the chemical composition of lithium disilicate ceramic and evaluate the surface of this material after nonthermal plasma treatment.Material and methods. A total of 21 specimens of lithium disilicate (10 mm in diameter and 3 mm thick) were fabricated and randomly divided into 3 groups (n=7) according to surface treatment. The control group was not subjected to any treatment except surface polishing with abrasive paper. In the hydrofluoric acid group, the specimens were subjected to hydrofluoric acid gel before silane application. Specimens in the nonthermal plasma group were subjected to the nonthermal plasma treatment. The contact angle was measured to calculate surface energy. In addition, superficial roughness was measured and was examined with scanning electron microscopy, and the chemical composition was characterized with energy-dispersive spectroscopy analysis. The results were analyzed with ANOVA and the Tukey honestly significant difference test (alpha=.05).Results. The water contact angle was decreased to 0 degrees after nonthermal plasma treatment. No significant difference in surface roughness was observed between the control and nonthermal plasma groups. Scanning electron microscopy and energy-dispersive spectroscopy images indicated higher amounts of oxygen (O) and silicon (Si) and a considerable reduction in carbon (C) in the specimens after nonthermal plasma treatment.Conclusions. Nonthermal plasma treatment can transform the characteristics of a ceramic surface without affecting its surface roughness. A reduction in C levels and an increase in 0 and Si levels were observed with the energy-dispersive spectroscopy analysis, indicating that the deposition of the thin silica film was efficient.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Alumina thin films have been obtained by resistive evaporation of Al layer, followed by thermal oxidation achieved by annealing in appropriate atmosphere (air or O-2-rich), with variation of annealing time and temperature. Optical and structural properties of the investigated films reveal that the temperature of 550 degrees C is responsible for fair oxidation. Results of surface electrical resistivity, Raman and infrared spectroscopies are in good agreement with this finding. X-ray and Raman data also suggest the crystallization of Si nuclei at glass substrate-alumina interface, which would come from the soda-lime glass used as substrate. The main goal in this work is the deposition of alumina on top of SnO2 to build a transparent field-effect transistor. Some microscopy results of the assembled SnO2/Al2O3 heterostructure are also shown.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work is intended to study the possibility of adding an amount of waste from iron mining in the ceramic mass. Clay and coal, from Vale do Paraiba, Sao Paulo, Brazil, were used in this research. These raw materials are used in the ceramic block manufacture. Clay and waste were analyzed by X-ray fluorescence and X-ray diffraction, particle size, differential thermal and thermogravimetric analysis. Liquid limit and plasticity index tests were performed in order to determine the amount of waste that which should be used in the ceramic mass. After determining the amount of waste, all samples were uniaxially pressed and sintered at 900 degrees C. Surface roughness measurements, apparent porosity and bulk density technique and three-point flexural tests were also performed to characterize the samples. The results showed that by adding the exact amount of waste, which was determined by the essays, it is possible to manufacture solid bricks.
Resumo:
Introduction: Based on the importance of the integrity of the metal/ceramic interface, the purpose of this work was to evaluate the shear bond strength of the metal-ceramic union of two Co-Cr alloys (Wirobond C, Bego; Remanium 2000, Dentaurum) combined with Omega 900 ceramic (Vita Zahnfabrik). Material and Method: Eleven cylindrical matrixes were made for each alloy, and the metallic portion was obtained with the lost wax casting technique with standardized waxing of 4mm of height and of 4mm of diameter. The ceramic was applied according to the manufacturer's recommendations with the aid of a teflon matrix that allowed its dimension to be standardized in the same size as the metallic portion. The specimens were submitted to the shear bond test in an universal testing machine (EMIC), with the aid of a device developed for such intention, and constant speed of 0.5mm/min. Results and Conclusions: The mean resistance was 48.387MPa for Wirobond C alloy, with standard deviation of 17.718, and 55.956MPa for Remanium 2000, with standard deviation of 17.198. No statistically significant difference was observed between the shear strength of the two metal-ceramic alloys.