996 resultados para track survey
Resumo:
Nonindigenous species (NIS) are a major threat to marine ecosystems, with possible dramatic effects on biodiversity, biological productivity, habitat structure and fisheries. The Papahānaumokuākea Marine National Monument (PMNM) has taken active steps to mitigate the threats of NIS in Northwestern Hawaiian Islands (NWHI). Of particular concern are the 13 NIS already detected in NWHI and two invasive species found among the main Hawaiian Islands, snowflake coral (Carijoa riseii) and a red alga (Hypnea musciformis). Much of the information regarding NIS in NWHI has been collected or informed by surveys using conventional SCUBA or fishing gear. These technologies have significant drawbacks. SCUBA is generally constrained to depths shallower than 40 m and several NIS of concern have been detected well below this limit (e.g., L. kasmira – 256 m) and fishing gear is highly selective. Consequently, not all habitats or species can be properly represented. Effective management of NIS requires knowledge of their spatial distribution and abundance over their entire range. Surveys which provide this requisite information can be expensive, especially in the marine environment and even more so in deepwater. Technologies which minimize costs, increase the probability of detection and are capable of satisfying multiple objectives simultaneously are desired. This report examines survey technologies, with a focus on towed camera systems (TCSs), and modeling techniques which can increase NIS detection and sampling efficiency in deepwater habitats of NWHI; thus filling a critical data gap in present datasets. A pilot study conducted in 2008 at French Frigate Shoals and Brooks Banks was used to investigate the application of TCSs for surveying NIS in habitats deeper than 40 m. Cost and data quality were assessed. Over 100 hours of video was collected, in which 124 sightings of NIS were made among benthic habitats from 20 to 250 m. Most sightings were of a single cosmopolitan species, Lutjanus kasmira, but Cephalopholis argus, and Lutjanus fulvus, were also detected. The data expand the spatial distributions of observed NIS into deepwater habitats, identify algal plain as an important habitat and complement existing data collected using SCUBA and fishing gear. The technology’s principal drawback was its inability to identify organisms of particular concern, such as Carijoa riseii and Hypnea musciformis due to inadequate camera resolution and inability to thoroughly inspect sites. To solve this issue we recommend incorporating high-resolution cameras into TCSs, or using alternative technologies, such as technical SCUBA diving or remotely operated vehicles, in place of TCSs. We compared several different survey technologies by cost and their ability to detect NIS and these results are summarized in Table 3.
Resumo:
This protocol was developed by the Biogeography Branch of NOAA’s Center for Coastal Monitoring and Assessment to support invasive species research by the Papahānaumokuākea Marine National Monument. The protocol’s objective is to detect Carijoa riisei and Hypnea musciformis in deepwater habitats using visual surveys by technical divers. Note: This protocol is designed to detect the presence or absence of invasive species. A distinct protocol is required to collect information on abundance and impact, or monitor changes over time.
Resumo:
The impact of recent changes in climate on the arctic environment and its ecosystems appear to have a dramatic affect on natural populations (National Research Council Committee on the Bering Sea Ecosystem 1996) and pose a serious threat to the continuity of indigenous arctic cultures that are dependent on natural resources for subsistence (Peterson D. L., Johnson 1995). In the northeast Pacific, winter storms have intensified and shifted southward causing fundamental changes in sea surface temperature patterns (Beamish 1993, Francis et al. 1998). Since the mid 1970’s surface waters of the central basin of the Gulf of Alaska (GOA) have warmed and freshened with a consequent increase in stratification and reduced winter entrainment of nutrients (Stabeno et al. 2004). Such physical changes in the structure of the ocean can rapidly affect lower trophic levels and indirectly affect fish and marine mammal populations through impacts on their prey (Benson and Trites 2002). Alaskan natives expect continued and perhaps accelerating changes in resources due to global warming (DFO 2006).and want to develop strategies to cope with their changing environment.
Resumo:
The relative abundance of Bristol Bay red king crab (Paralithodes camtschaticus) is estimated each year for stock assessment by using catch-per-swept-area data collected on the Alaska Fisheries Science Center’s annual eastern Bering Sea bottom trawl survey. To estimate survey trawl capture efficiency for red king crab, an experiment was conducted with an auxiliary net (fitted with its own heavy chain-link footrope) that was attached beneath the trawl to capture crabs escaping under the survey trawl footrope. Capture probability was then estimated by fitting a model to the proportion of crabs captured and crab size data. For males, mean capture probability was 72% at 95 mm (carapace length), the size at which full vulnerability to the survey trawl is assigned in the current management model; 84.1% at 135 mm, the legal size for the fishery; and 93% at 184 mm, the maximum size observed in this study. For females, mean capture probability was 70% at 90 mm, the size at which full vulnerability to the survey trawl is assigned in the current management model, and 77% at 162 mm, the maximum size observed in this study. The precision of our estimates for each sex decreased for juveniles under 60 mm and for the largest crab because of small sample sizes. In situ data collected from trawl-mounted video cameras were used to determine the importance of various factors associated with the capture of individual crabs. Capture probability was significantly higher when a crab was standing when struck by the footrope, rather than crouching, and higher when a crab was hit along its body axis, rather than from the side. Capture probability also increased as a function of increasing crab size but decreased with increasing footrope distance from the bottom and when artificial light was provided for the video camera.
Resumo:
In trawl surveys a cluster of fish are caught at each station, and fish caught together tend to have more similar characteristics, such as length, age, stomach contents etc., than those in the entire population. When this is the case, the effective sample size for estimates of the frequency distribution of a population characteristic can, therefore, be much smaller than the number of fish sampled during a survey. As examples, it is shown that the effective sample size for estimates of length-frequency distributions generated by trawl surveys conducted in the Barents Sea, off Namibia, and off South Africa is on average approximately one fish per tow. Thus many more fish than necessary are measured at each station (location). One way to increase the effective sample size for these surveys and, hence, increase the precision of the length-frequency estimates, is to reduce tow duration and use the time saved to collect samples at more stations.
Resumo:
Longitudinal surveys of anglers or boat owners are widely used in recreational fishery management to estimate total catch over a fishing season. Survey designs with repeated measures of the same random sample over time are effective if the goal is to show statistically significant differences among point estimates for successive time intervals. However, estimators for total catch over the season that are based on longitudinal sampling will be less precise than stratified estimators based on successive independent samples. Conventional stratified variance estimators would be negatively biased if applied to such data because the samples for different time strata are not independent. We formulated new general estimators for catch rate, total catch, and respective variances that sum across time strata but also account for correlation stratum samples. A case study of the Japanese recreational fishery for ayu (Plecoglossus altivelis) showed that the conventional stratified variance estimate of total catch was about 10% of the variance estimated by our new method. Combining the catch data for each angler or boat owners throughout the season reduced the variance of the total catch estimate by about 75%. For successive independent surveys based on random independent samples, catch, and variance estimators derived from combined data would be the same as conventional stratified estimators when sample allocation is proportional to strata size. We are the first to report annual catch estimates for ayu in a Japanese river by formulating modified estimators for day-permit anglers.
Resumo:
NMFS bottom trawl survey data were used to describe changes in distribution, abundance, and rates of population change occurring in the Gulf of Maine–Georges Bank herring (Clupea harengus) complex during 1963–98. Herring in the region have fully recovered following severe overfishing during the 1960s and 1970s. Three distinct, but seasonally intermingling components from the Gulf of Maine, Nantucket Shoals (Great South Channel area), and Georges Bank appear to compose the herring resource in the region. Distribution ranges contracted as herring biomass declined in the late 1970s and then the range expanded in the 1990s as herring increased. Analysis of research survey data suggest that herring are currently at high levels of abundance and biomass. All three components of the stock complex, including the Georges Bank component, have recovered to pre-1960s abundance. Survey data support the theory that herring recolonized the Georges Bank region in stages from adjacent components during the late 1980s, most likely from herring spawning in the Gulf of Maine.
Resumo:
We have formulated a model for analyzing the measurement error in marine survey abundance estimates by using data from parallel surveys (trawl haul or acoustic measurement). The measurement error is defined as the component of the variability that cannot be explained by covariates such as temperature, depth, bottom type, etc. The method presented is general, but we concentrate on bottom trawl catches of cod (Gadus morhua). Catches of cod from 10 parallel trawling experiments in the Barents Sea with a total of 130 paired hauls were used to estimate the measurement error in trawl hauls. Based on the experimental data, the measurement error is fairly constant in size on the logarithmic scale and is independent of location, time, and fish density. Compared with the total variability of the winter and autumn surveys in the Barents Sea, the measurement error is small (approximately 2–5%, on the log scale, in terms of variance of catch per towed distance). Thus, the cod catch rate is a fairly precise measure of fish density at a given site at a given time.
Resumo:
Historical flood events produced lakes in the Mojave River watershed in southeastern California and represent climatic conditions similar to those in the late Quaternary when perennial lakes formed in the Mojave Desert. Historical lakes are related to tropical and subtropical sources of moisture and an extreme southward shift of storm tracks. It is suggested that this atmospheric pattern occurred frequently during earlier periods with perennial lakes in the Mojave River drainage basin.
Resumo:
The paper presents the results of a bacteriological survey carried out on 2,917 samples of frozen prawn, 55 samples of raw material, 35 samples of water, 4 samples of ice and 42 samples of various equipment used for processing. The survey covered a period of three years (1960-63) and comprised of samples collected from five of the leading processing factories in Cochin. Frozen products tested consisted of headless (marine and fresh water), peeled and deveined and cooked frozen samples. Statistical analysis of the data shows that there is no significant variation between samples and between factories with respect to product quality. The standard plate count varied between 1.0x10(4 superscript) and 1.0x10(6 superscript) per gram for headless and between 1.0x10(4 superscript) and 1.0x10(7 superscript) for peeled and deveined and cooked frozen samples. Majority of the samples had bacterial load well within the limits prescribed for such products.
Resumo:
A survey of the quality of salt cured fish in Kanyakumari District, Madras State was done during the years 1963 and 1964 to obtain necessary basic information to formulate quality standards for these products which are gaining importance in the export trade. 155 trade samples of sun-dried, dry-salted, wet-cured and pit-cured fishery products were examined for their chemical quality and organoleptic characteristics. 26.5% of the sun-dried products, 25% of the wet cured fish, 55.21% of the dried salted products and none of the pit cured samples were found to be good in quality. The sun dried products were generally found to have heavy admixture of sand and were inadequately dried. The chief defects in the salt cured fish products were found to be the use of spoiled fish, imperfect cleaning and washing, use of impure salt, inadequate salting, curing and drying, and unhygienic conditions in all stages. Quality standards must be formulated for each variety of salt cured fish product and adequate measures taken to rectify the defects and enforce the quality standards.
Resumo:
Historical survey maps of Maryland oyster bars, crab bottoms, and clam beds, by county and watershed. PDF includes two index maps and forty-two survey maps scanned from microfilm.