1000 resultados para tonische Inhibition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digestion affects acid-base status, because the net transfer of HCl from the blood to the stomach lumen leads to an increase in HCO3- levels in both extra- and intracellular compartments. The increase in plasma [HCO3-], the alkaline tide, is particularly pronounced in amphibians and reptiles, but is not associated with an increased arterial pH, because of a concomitant rise in arterial Pco(2) caused by a relative hypoventilation. In this study, we investigate whether the postprandial increase in Paco(2) of the toad Bufo marinus represents a compensatory response to the increased plasma [HCO3-] or a state-dependent change in the control of pulmonary ventilation. To this end, we successfully prevented the alkaline tide, by inhibiting gastric acid secretion with omeprazole, and compared the response to that of untreated toads determined in our laboratory during the same period. In addition, we used vascular infusions of bicarbonate to mimic the alkaline tide in fasting animals. Omeprazole did not affect blood gases, acid-base and haematological parameters in fasting toads, but abolished the postprandial increase in plasma [HCO3-] and the rise in arterial Pco(2) that normally peaks 48 h into the digestive period. Vascular infusion of HCO3-, that mimicked the postprandial rise in plasma [HCO3-], led to a progressive respiratory compensation of arterial pH through increased arterial Pco(2) Thus, irrespective of whether the metabolic alkalosis is caused by gastric acid secretion in response to a meal or experimental infusion of bicarbonate, arterial pH is being maintained by an increased arterial Pco(2). It seems, therefore, that the elevated Pco(2), occuring during the postprandial period, constitutes of a regulated response to maintain pH rather than a state-dependent change in ventilatory control. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostatic differentiation during embryogenesis and its further homeostatic state maintenance during adult life depend on androgens. Dihydrotestosterone, which is synthesized from testosterone by 5alpha-reductase (5alpha-r), is the active molecule triggering androgen action within the prostate. In the present work, we examined the effects of 5alpha-reductase inhibition by finasteride in the ventral prostate (VP) of the adult gerbil, employing histochemical and electron microscopy techniques to demonstrate the morphological and organizational changes of the organ. After 10 days of finasteride treatment at a dose of 100 mg/kg/day, the prostatic complex (VP and dorsolateral prostate) absolute weight was reduced to about 18%. The epithelial cells became short and cuboidal, with less secretory blebs and reduced acid phosphatase activity. The luminal sectional area diminished, suggestive of decreased secretory activity. The stromal/epithelial ratio increased, the stroma becoming thicker but less cellular. There was a striking accumulation of collagen fibrils, which was accompanied by an increase in deposits of amorphous granular material adjacent to the basal lamina and in the clefts between smooth muscle cells (SMC). Additionally, the periacinar smooth muscle became loosely packed. Some SMC were atrophic and showed a denser array of the cytoskeleton, whereas other SMC had a highly irregular outline with numerous spine-like projections. The present data indicate that 5alpha-r inhibition causes epithelial and stromal changes by affecting intra-prostatic hormone levels. These alterations are probably the result of an imbalance of the homeostatic interaction between the epithelium and the underlying stroma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NAPc2, an anticoagulant protein from the hematophagous nematode Ancylostoma caninum evaluated in phase-II/IIa clinical trials, inhibits the extrinsic blood coagulation pathway by a two step mechanism, initially interacting with the hitherto uncharacterized factor Xa exosite involved in macromolecular recognition and subsequently inhibiting factor VIIa (K-i = 8.4 pM) of the factor VIIa/tissue factor complex. NAPc2 is highly flexible, becoming partially ordered and undergoing significant structural changes in the C terminus upon binding to the factor Xa exosite. In the crystal structure of the ternary factor Xa/NAPc2/selectide complex, the binding interface consists of an intermolecular antiparallel beta-sheet formed by the segment of the polypeptide chain consisting of residues 74-80 of NAPc2 with the residues 86-93 of factor Xa that is additional maintained by contacts between the short helical segment (residues 67-73) and a turn (residues 26-29) of NAPc2 with the short C-terminal helix of factor Xa (residues 233-243). This exosite is physiologically highly relevant for the recognition and inhibition of factor X/Xa by macromolecular substrates and provides a structural motif for the development of a new class of inhibitors for the treatment of deep vein thrombosis and angioplasty. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suramin, a synthetic polysulfonated compound, developed initially for the treatment of African trypanosomiasis and onchocerciasis, is currently used for the treatment of several medically relevant disorders. Suramin, heparin, and other polyanions inhibit the myotoxic activity of Lys49 phospholipase A(2) analogues both in vitro and in vivo, and are thus of potential importance as therapeutic agents in the treatment of viperid snake bites. Due to its conformational flexibility around the single bonds that link the central phenyl rings to the secondary amide backbone, the symmetrical suramin molecule binds by an induced-fit mechanism complementing the hydrophobic surfaces of the dimer and adopts a novel conformation that lacks C2 symmetry in the dimeric crystal structure of the suramin-Bothrops asper myotoxin II complex. The simultaneous binding of suramin at the surfaces of the two monomers partially restricts access to the nominal active sites and significantly changes the overall charge of the interfacial recognition face of the protein, resulting in the inhibition of myotoxicity. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerando o uso popular de Casearia sylvestris Sw., Salicaceae, para o tratamento de problemas gástricos e resultados pré-clínicos que mostraram potencial atividade anti-ulcerogênica, foi realizado um screening farmacológico para avaliar a atividade biológica de outras espécies de Salicaceae. Para isso, foi utilizado um ensaio de inibição de proteases como um modelo farmacológico molecular para screening de extratos com atividade anti-ulcerogênica. Os extratos etanólico e aquoso dos galhos e folhas de C. gossypiosperma, C. decandra e C. rupestris mostraram inibição da atividade da pepsina em aproximadamente 50% com a concentração de 1 μg/mL. Curiosamente, C. obliquoa e Flacourtia ramontchi não apresentaram atividade sobre a pepsina, mas seus extratos mais apolares mostraram atividade inibitória sobre a subtilisina. A fração enriquecida de diterpenos clerodânicos mostrou atividade inibitória (42,75%) sobre a pepsina com a concentração de 1 μg/mL, mas não sobre a subtilisina (23,76%). Os resultados obtidos com os extratos e folhas das espécies testadas mostraram um padrão de atividade diferente sobre os dois tipos de proteases, a pepsina e a subtilisina, as quais estão relacionadas com diferentes tipos de atividades biológicas. Ainda mais, os resultados com a fração enriquecida de diterpenos clerodânicos sugerem que estas substâncias podem estar relacionadas com a atividade do extrato bruto de C. sylvestris.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to evaluate the influence of run training on the responsiveness of corpus cavernosum (CC) from rats made hypertensive by treatment with nitric oxide (NO) synthesis inhibitor. Wistar rats were divided into sedentary control (C-SD), exercise training (C-TR), N(omega)-nitro-L-arginine methyl ester (L-NAME) sedentary (LN-SD) and L-NAME trained (LN-TR) groups. The run training program consisted in 8 weeks in a treadmill, 5 days/week, each session lasted 60 min. L-NAME treatment (2 and 10mg/rat/day) started after 4 weeks of prior physical conditioning and lasted 4 weeks. Concentration-response curves were obtained for acetylcholine (ACh), sodium nitroprusside (SNP), sildenafil and BAY 41-2272. The effect of electrical field stimulation (EFS) on the relaxations responses of CC was evaluated. Run training prevented the arterial hypertension induced by L-NAME treatment (LN-SD: 135+/-2 and 141+/-2 mm Hg for both doses of L-NAME) compared to LN-SD groups (154+/-1 and 175+/-2 mm Hg, for 2 and 10 mg of L-NAME, respectively). Run training produced an increase in the maximal responses (E(max)) of CC for ACh (C-SD: 47+/-3; C-TR: 5271; and LN-TR: 53+/-3%) and SNP (C-SD: 8971; C-TR: 9871; and LN-TR: 95+/-1%). Both potency and E(max) for ACh were reduced in a dose of 10 mg of L-NAME, and run training restored the reduction of E(max) for ACh. No changes were found for BAY 41-2271 and sildenafil. Relaxing responses to EFS was reduced by L-NAME treatment that was restored by prior physical conditioning. In conclusion, our study shows a beneficial effect of prior physical conditioning on the impaired CC relaxing responses in rats made hypertensive by chronic NO blockade.