934 resultados para the parabolized stability equations (PSE)
Resumo:
The grouts used in sealing or backfilling boreholes should ideally be selected to be compatible with the insitu field instruments installed in the borehole and also be engineered to match closely the geotechnical properties of the parent soils. A stable grout can be made using cement with various proportions of bentonite. The grout stability is very important during both the liquid and set conditions. The liquid grout fluidity should be as viscous as possible to avoid segregation, yet fluid enough to be easily pumpable and fill voids and over-break in the borehole. This paper investigates the effect of bentonite on the fresh and rheological properties of cement-based grouts in order to develop a stable grout to be used in these geotechnical situations. These properties were evaluated by the mini-slump flow, marsh cone flow time, Lombardi plate cohesion meter, static bleeding, yield stress and plastic viscosity values. Additionally, the compressive strength at 3 days, 7 days and 28 days were also investigated. The key parameters investigated were the dosages of bentonite and water-to-binder ratio (W/B). Test results showed that the dosage of bentonite had a significant effect on the fluidity, rheological properties and compressive strength of grout. The increase in the dosage of bentonite led to increasing the values of flow time, plate cohesion meter, yield stress and plastic viscosity, and reducing the mini-slump results, the static bleeding and the compressive strength at 3 days, 7 days and 28 days. Conversely, the increase in W/B led to decreasing the values of flow time, plate cohesion meter, yield stress, and plastic viscosity and the compressive strength, while increasing the mini-slump results and bleeding. Some recommendations for suitable mix proportions for use in soil boreholes are made.
Resumo:
Context. The magnetic activity of planet-hosting stars is an importantfactor for estimating the atmospheric stability of close-in exoplanetsand the age of their host stars. It has long been speculated thatclose-in exoplanets can influence the stellar activity level. However,testing for tidal or magnetic interaction effects in samples ofplanet-hosting stars is difficult because stellar activity hindersexoplanet detection, so that stellar samples with detected exoplanetsshow a bias toward low activity for small exoplanets.
Aims: Weaim to test whether exoplanets in close orbits influence the stellarrotation and magnetic activity of their host stars.
Methods: Wedeveloped a novel approach to test for systematic activity-enhancementsin planet-hosting stars. We use wide (several 100 AU) binary systems inwhich one of the stellar components is known to have an exoplanet, whilethe second stellar component does not have a detected planet andtherefore acts as a negative control. We use the stellar coronal X-rayemission as an observational proxy for magnetic activity and analyzeobservations performed with Chandra and XMM-Newton.
Results: Wefind that in two systems for which strong tidal interaction can beexpected the planet-hosting primary displays a much higher magneticactivity level than the planet-free secondary. In three systems forwhich weaker tidal interaction can be expected the activity levels ofthe two stellar components agree with each other.
Conclusions:Our observations indicate that the presence of Hot Jupiters may inhibitthe spin-down of host stars with thick outer convective layers. Possiblecauses for this effect include a transfer of angular momentum from theplanetary orbit to the stellar rotation through tidal interaction, ordifferences during the early evolution of the system, where the hoststar may decouple from the protoplanetary disk early because of a gapopened by the forming Hot Jupiter.
Resumo:
Despite the lack of a shear-rich tachocline region, low-mass fully convective (FC) stars are capable of generating strong magnetic fields, indicating that a dynamo mechanism fundamentally different from the solar dynamo is at work in these objects. We present a self-consistent three-dimensional model of magnetic field generation in low-mass FC stars. The model utilizes the anelastic magnetohydrodynamic equations to simulate compressible convection in a rotating sphere. A distributed dynamo working in the model spontaneously produces a dipole-dominated surface magnetic field of the observed strength. The interaction of this field with the turbulent convection in outer layers shreds it, producing small-scale fields that carry most of the magnetic flux. The Zeeman–Doppler-Imaging technique applied to synthetic spectropolarimetric data based on our model recovers most of the large-scale field. Our model simultaneously reproduces the morphology and magnitude of the large-scale field as well as the magnitude of the small-scale field observed on low-mass FC stars.
Resumo:
This paper describes the hydrogeological processes which caused unexpected instability and quick conditions during the excavation of a 25m deep cutting through a drumlin in County Down, Northern Ireland. A conceptual hydrogeological model of the cutting, based on pore pressures monitored during and after the excavation demonstrates how quick conditions at the toe of the cutting caused liquefaction of the till. Stability of the cutting was re-established by draining the highly permeable, weathered Greywacke which underlies the drumlin, through the use of a deep toe drain. In spite of this drainage, the cutting was only marginally stable due to the presence of a low permeability zone in the till above the bedrock which limits the reduction of elevated pore pressures within the upper to mid-depths of the drumlin. The factor of safety has been further improved by the addition of vertical relief drains at the crest and berm of the cutting to relieve the pore-pressures within the upper till by intercepting the weathered bedrock. The paper also highlights the importance of carrying out an adequate site investigation compliant with Eurocode 7 and additional monitoring in excavations in stiff, low permeability till.
Resumo:
This paper describes the design of a frequency selective surface (FSS) which provides transmission of 228 - 230 GHz radiation and rejection from 164 – 191.3 GHz with insertion losses under 0.25 dB for TE wave polarization at 45 incidence. This state-of-the art filter consists of two air spaced freestanding perforated screens, comprising unit cell elements of resonant slots folded for the purpose of miniaturisation to enhance angular stability. The reported geometry enhances the angular stability (45 ± 10) of the FSS beyond what is possible with canonical linear slots and satisfies the stringent electromagnetic performance requirements for signal demultiplexing in the quasi-optical feed train of the Microwave Sounder (MWS) instrument.
Resumo:
A first stage collision database is assembled which contains electron-impact excitation, ionization,\r and recombination rate coefficients for B, B + , B 2+ , B 3+ , and B 4+ . The first stage database\r is constructed using the R-matrix with pseudostates, time-dependent close-coupling, and perturbative\r distorted-wave methods. A second stage collision database is then assembled which contains\r generalized collisional-radiative ionization, recombination, and power loss rate coefficients as a\r function of both temperature and density. The second stage database is constructed by solution of\r the collisional-radiative equations in the quasi-static equilibrium approximation using the first\r stage database. Both collision database stages reside in electronic form at the IAEA Labeled Atomic\r Data Interface (ALADDIN) database and the Atomic Data Analysis Structure (ADAS) open database.
Resumo:
In this work, the general framework in which fits our investigation is that of modeling the dynamics of dust grains therein dusty plasma (complex plasma) in the presence of electromagnetic fields. The generalized discrete complex Ginzburg-Landau equation (DCGLE) is thus obtained to model discrete dynamical structure in dusty plasma with Epstein friction. In the collisionless limit, the equation reduces to the modified discrete nonlinear Schrödinger equation (MDNLSE). The modulational instability phenomenon is studied and we present the criterion of instability in both cases and it is shown that high values of damping extend the instability region. Equations thus obtained highlight the presence of soliton-like excitation in dusty plasma. We studied the generation of soliton in a dusty plasma taking in account the effects of interaction between dust grains and theirs neighbours. Numerical simulations are carried out to show the validity of analytical approach.
Resumo:
Resumo:
Tese de doutoramento, Medicina Dentária (Periodontologia), Universidade de Lisboa, Faculdade de Medicina Dentária, 2016
Resumo:
Este trabalho é realizado no domínio das obras de engenharia, área onde o desmonte de rocha com recurso a explosivos em obras rodoviárias é uma actividade específica e consistiu no acompanhamento e execução de três obras rodoviárias de média e grande dimensão. A necessidade de executar escavações, recorrendo a técnicas de desmonte cuidadoso de contorno, onde o plano de corte do talude final deve obedecer a requisitos de localização, alinhamento, inclinação, estabilidade e também estéticos, acrescendo a isto a necessidade de optimizar os meios envolvidos, obriga a que esta actividade seja encarada de uma forma sistematizada, visando o racional aproveitamento de recursos. A execução desta actividade requer conhecimentos no domínio das técnicas de desmonte de contorno, dos explosivos, do mecanismo de rotura de rochas, da operação de perfuração e da geomecânica dos maciços. A abordagem deste trabalho incide sobre a técnica denominada de pré‐corte e tem como objectivo encontrar uma equação característica que permita relacionar diferentes parâmetros envolvidos nesta actividade. Este objectivo é alcançado recorrendo à correlação entre equações relativas à pressão de detonação, à pressão no furo e ao espaçamento entre furos consecutivos, desenvolvidas por outros autores. Desta forma obteve‐se uma equação que relaciona parâmetros relativos ao maciço rochoso (resistência à tracção), ao explosivo (velocidade de detonação e densidade) e ao diagrama de fogo (concentração de carga – volume de explosivo e comprimento do furo – volume do furo). A comparação entre os valores destes parâmetros obtidos na produção e os obtidos com recurso à equação característica permite concluir que a sua aplicação para execução de futuras obras possibilita uma optimização dos meios envolvidos.
Resumo:
The use of buffers to maintain the pH within a desired range is a very common practice in chemical, biochemical and biological studies. Among them, zwitterionic N-substituted aminosulfonic acids, usually known as Good’s buffers, although widely used, can complex metals and interact with biological systems. The present work reviews, discusses and updates the metal complexation characteristics of thirty one commercially available buffers. In addition, their impact on biological systems is also presented. The influences of these buffers on the results obtained in biological, biochemical and environmental studies, with special focus on their interaction with metal ions, are highlighted and critically reviewed. Using chemical speciation simulations, based on the current knowledge of the metal–buffer stability constants, a proposal of the most adequate buffer to employ for a given metal ion is presented.
Resumo:
The successful development of stable biosensors incorporating entrapped proteins suffers from poor understanding of the properties of the entrapped biomolecules. This thesis reports on the use of fluorescence spectroscopy to investigate the properties of proteins entrapped in sol-gel processed silicate materials. Two different single tryptophan (Trp) proteins were investigated in this thesis, the Ca2 + binding protein cod III parvalbumin (C3P) and the salicylate binding protein human serum albumin (HSA). Furthermore, the reactive single cysteine (Cys) residue within C3P and HSA were labelled with the probes iodoacetoxynitrobenzoxadiazole (C3P) and acrylodan (C3P and HSA) to further examine the structure, stability and function of the free and entrapped proteins. The results show that both C3P and HSA can be successfully entrapped into sol-gelderived matrices with retention of function and conformational flexibility.
Resumo:
Adenoviruses are the most commonly used in the development of oncolytic therapy. Oncolytic adenoviruses are genetically modified to selectivity replicate in and kill tumor cells. The p53 molecule is a tumor suppressor protein that responds to viral infection through the activation of apoptosis, which is inhibited by adenovirus E1B55kDa protein leading to progressive viral lytic cycle. The non-specificity of replication has limited the use of wild type adenovirus in cancer therapy. This issue was resolved by using an E1b deleted Ad that can only replicate in cells with a deficiency in the p53 protein, a common feature of most cancer cells. Although demonstrating a moderate success rate, E1b55kDa deleted Ad has not been approved as a standard therapy for all cancer types. Several studies have revealed that E1b deleted Ad replication was independent of p53 status in the cell, as the virus replicated better in some p53 deficient cancers more than others. However, this mechanism has not been investigated deeply. Therefore, the objective of this study is to understand the relationship between p53 status, levels and functional activity, and oncolytic Ad5dlE1b55kDa replication efficiency. Firstly, five transient p53 expression vectors that contain different regulatory elements were engineered and then evaluated in H1299, HEK293 and HeLa cell lines. Data indicated that vector that contains the MARs and HPRE regulatory elements achieved the highest stability of p53 expression. Secondly, we used these vectors to examine the effect of various p53 expression levels on the replication efficiency of oncolytic Ad5dlE1b55kDa. We found that the level of p53 in the cell had an insignificant effect on the oncolytic viruses’ replication. However, the functional activity of p53 had a significant effect on its replication, as Ad5dlE1b55kDa was shown to have selective activity in H1299 cells (p53-null). In contrast, a decrease in viral replication was found in HeLa cells (p53-positive). Finally, the effect of p53’s functional activity on the replication efficiency of oncolytic Ad5dlE1b55kDa was examined. Viral growth was evaluated in H1299 cells expressing number of p53 mutants. P53-R175H mutant successfully rescued viral growth by allowing the virus to exert its mechanism of selectivity. The mechanism entailed deregulating the expression of specific genes, cell cycle and apoptosis, in the p53 pathway to promote its production leading to efficient oncolytic effect. These results confirmed that oncolytic Ad5dlE1b55kDa sensitivity is mutation-type specific. Therefore, before it is applied clinically as cancer therapy for p53 deficient tumors, the type of p53 mutation must be determined for efficient antitumor effect.
Resumo:
The thesis report results obtained from a detailed analysis of the fluctuations of the rheological parameters viz. shear and normal stresses, simulated by means of the Stokesian Dynamics method, of a macroscopically homogeneous sheared suspension of neutrally buoyant non-Brownian suspension of identical spheres in the Couette gap between two parallel walls in the limit of vanishingly small Reynolds numbers using the tools of non-linear dynamics and chaos theory for a range of particle concentration and Couette gaps. The thesis used the tools of nonlinear dynamics and chaos theory viz. average mutual information, space-time separation plots, visual recurrence analysis, principal component analysis, false nearest-neighbor technique, correlation integrals, computation of Lyapunov exponents for a range of area fraction of particles and for different Couette gaps. The thesis observed that one stress component can be predicted using another stress component at the same area fraction. This implies a type of synchronization of one stress component with another stress component. This finding suggests us to further analysis of the synchronization of stress components with another stress component at the same or different area fraction of particles. The different model equations of stress components for different area fraction of particles hints at the possible existence a general formula for stress fluctuations with area fraction of particle as a parameter
Resumo:
Liquid Crystalline DNA is emerging as an active area of research, due to its potential applications in diverse fields, ranging from nanoelectronics to therapeutics. Since, counter ion neutralization is an essential requirement for the expression of LC DNA, and the present level of understanding on the LC phase behavior of high molecular weight DNA is inadequate, a thorough investigation is required to understand the nature and stability of these phases under the influence of various cationic species. The present study is, therefore mainly focused on a comparative investigation of the effect of metal ions of varying charge, size, hydration and binding modes on the LC phase behavior of high molecular weight DNA. The main objectives of the works are investigations on the induction and stabilization of LC phases of high molecular weight DNA by alkali metal ions, investigations on the induction and stabilization of LC phases of high molecular weight DNA by alkaline earth metal ions, effects of multivalent, transition and heavy metal ions on the LC phase behavior of high molecular weight DNA and investigations on spermine induced LC behavior of high molecular weight DNA in the presence of alkali and alkaline earth metal ions. The critical DNA concentration (CD) required for the expression of LC phases, phase transitions and their stability varied considerably when the binding site of the metal ions changed from phosphate groups to the nitrogenous bases of DNA, with Li+ giving the highest stability. Multiple LC phases with different textures, sometimes diffused and unstable or otherwise mainly distinct and clear, were observed on mixing metal ions with DNA solutions, which in turn depended on the charge, size, hydration factor, binding modes, concentration of the metal ions and time. Molecular modeling studies on binding of selected metal ions to DNA supported the experimental findings