971 resultados para stud walls
Resumo:
Mature leaves of Paepalanthus superbus exhibit intercellular protuberances between the inner periclinal walls of the epidermal and the parenchyma cells surface, as well as on the surface of the parenchyma mesophyll cells. These structures are mostly prominent around the parenchyma cells, forming a gel capsule-like structure. Histochemical tests with ruthenium red indicate the pectic nature of the intercellular deposits, with scattered lipidic inclusions as revealed by sudan IV and sudan black B. Ultrastructural analyses show a fibrillar matrix with scattered fimbriate and tubular structures, and a distinct margin delimited by a dense membrane-like structure. Our results suggest that the protuberances are derived from secretory activity, and are formed after the development of the intercellular spaces. For P. superbus this structure may represent an important cell wall specialisation, related with the adhesion and transport mechanisms between cells.
Resumo:
Dialypetalanthus fuscescens is an Amazonian endemic species with problematic taxonomic position. This neotropical rainforest tree belongs to the monospecific Dialypetalanthaceae. In the present work, we analysed the leaf cell-wall polysaccharide composition of Dialypetalanthus fuscescens and compared it to that of Bathysa meridionalis (Rubiaceae-Cinchonoideae). Glycosyl composition and glycosyl-linkage analysis indicated that both species have similar cell wall composition. Arabinogalactans were the major component of the pectic polysaccharides and xylans, although being reported in minor amounts in dicots, were found to be the predominant hemicellulosic polysaccharide in cell walls of both species. These findings are in agreement with previous data on cell wall composition reported for Rubiaceae and corroborate the current suggestion of the possible link between this family and Dialypetalanthaceae.
Resumo:
The chalazal megaspore develops in a Polygonum-type embryo sac. The amyloplast-rich endothelium is partially degraded during the expansion of the micropylar portion of the megagametophyte. Organization of the mature embryo sac is determined by the patterns of vacuolation, nuclear migration, spindle orientation and cellularization. The egg cell is slightly chalazal in relation to the synergids, and its micropylar end does not touch the micropylar channel. At the chalazal pole of the egg apparatus, the common walls between the synergids, the egg and central cells, despite their tenuity, are present in the mature megagametophyte. The polar nuclei do not fuse before fertilization and the antipodals are persistent until the first stages of endosperm formation. The taxonomic significance of some embryological characters for the Bignoniaceae is discussed.
Resumo:
Galactomannans (GM) are storage cell wall polysaccharides present in endospermic seeds of legumes. They are thought to be storage polymers, since it has been observed for a few species (among them Sesbania virgata) that they are completely broken down after germination and their products are transferred to the growing embryo. We examined the effect of 10-4 M abscisic acid (ABA) on the degradation of galactomannan in isolated endosperms and intact seeds of S. virgata. We found that after seed germination the initial embryo growth was retarded. Ultrastructural analysis showed that the embryo is completely surrounded by an endosperm which displays very thick galactomannan-containing cell walls. Although an inhibitory effect has been observed on the increase of fresh mass of the embryo, the effect of ABA on the dry mass was weaker and transitory (from 48 to 96 h). Endosperm dry mass and galactomannan degradation were significantly inhibited and the activity of alpha-galactosidase was strongly affected. The addition of ABA before and/or after the start of mobilisation in intact seeds or isolated endosperms, showed that whereas addition before mobilisation did not affect dry mass decrease in intact seeds, it was strongly affected in isolated endosperms. On the other hand, whereas it affected embryo fresh mass increase in intact seeds, but not in isolated embryos, no significant effect was observed on dry mass. These results suggest that ABA affects galactomannan degradation and by doing so, prevents water absorption by the embryo, rather than affect its dry mass. As ABA has been detected in the endosperm of seeds of S. virgata, it is proposed that it probably acts as a modulator of galactomannan mobilisation and consequently synchronises it with early growth of the embryo.
Resumo:
Leaves of Struthanthus vulgaris Mart. (Loranthaceae) exhibit galls induced by a Hymenoptera. These galls pass through five developmental stages. In the first stage, a small brown swelling is observed on the surface of the leaf. Internally, the chlorenchyma cells around the eggs of the gall-makers are divided. In the second stage, the gall enlarges and its surface assumes a wavy appearance with a depressed region in its center. Within this depression, an incompletely divided gall chamber with embryos is observed. Neoformed parenchyma is present around the chamber and the secondary walls of fibers and sclereids are no longer observed. The vascular parenchyma shows hyperplasia. In the third stage, the gall grows larger and adopts an ellipsoidal shape. Fissures appear on the gall epidermis and the neoformed parenchyma is conspicuous, with a cortical and a medullar region. In the medullar region, each gall chamber, with one inducer in larval phase, is lined with 1-2 layers of nutritive tissue. The gall is larger still at the fourth stage of development and a periderm coats most of the gall. New vascular bundles, sclereids, and fibers are formed. The gall-makers are in advanced larval phase and no nutritive tissue cells are observed. In the fifth stage, the gall reaches its definitive size and the inducers are in the pupa phase. At this stage, the cortical region undergoes slight hypertrophy. The senescent gall shows the orifices of the exit channel made by the adult gallmakers. The anatomical studies of the hymenopteran gall enabled to compare this gall with a dipteran one, previously discribed in the same plant host. It is suggested that during the maturation of the gall, specific key processes are triggered, which bring about a specific cecidogenesis.
Resumo:
The meristematic endodermis in adventitious roots of Richterago species originates in one of the fundamental meristem cells, which undergo sucessive anticlinal and periclinal divisions to build the inner cortex. The meristematic endodermis or proendodermis remains as a meristematic layer until its differentiation into endodermis, with Casparian strip. When sieve elements differentiate, endodermic secretory canals of esquizogenous origin are present at the region adjacent to primary phloem. Articulated laticifers, with cells perforated at both terminal and transversal walls, also occur during initial phases of secondary development. Presence of inulin as reserve carbohydrate in the inner cortex and vascular tissue may be related to abiotic factors, as an adaptive strategy of these species.
Resumo:
The structure of the fruit and seed in development of Chorisia speciosa are described with the main purpose of clarifying the origin and nature of the hairs that cover the seeds and aiding future taxonomical and ecological studies of the group. The fruit is an ellipsoid loculicide capsule and presents the exocarp formed by 7-10 cells layers, with very thick walls and evident simple pits. A great number of mucilage secretory cavities and ramified vascular bundles, accompanied by fibers, occur in the parenchymatic mesocarp. The endocarp derives from the ventral epidermis of the ovary wall, whose cells undergo a gradual elongation, become lignified, and constitute the trichomes which cover the mature seeds. The fruit aperture occurs by means of a suture evident in the ovarian wall in the middle region of the carpel leaf. Anatropous and bitegmic ovules, provided by a hypostase, give rise to campilotropous and bitegmic seeds. The testa is uniseriate, the exotegmen is completely formed by macrosclereids, and mucilage secretory cavities occur in the mesotegmen. The endotegmen, which is differentiated in the endothelium, is crushed in the mature seed. The plicate embryo, which occupies practically the entire seminal cavity, is found between endosperm layers, both being rich in lipids.
Resumo:
Cyperus giganteus shows Kranz anatomy of the clorocyperoid type or with two sheaths, one internal, adjacent to the vascular system and known as Kranz sheath, with thin-walled cells and a large number of organelles, mainly chloroplasts; and an external sheath, the mestome sheath or endodermis, the cells of which present thickened walls, are without chloroplasts and possess a suberin lamella, together with the casparian strip which are detected in early stages of differentiation. The development of the vascular bundles shows the Kranz sheath originating from the procambial as well as the mestome sheath. The chloroplasts of the Kranz cells are relatively larger, with convoluted thylakoids and a prominent peripheral reticulum, while the chloroplasts of the mesophyll cells are relatively smaller, with thylakoids forming grana and a sparse peripheral reticulum. These ultrastructural characteristics show similarities to those of other species of the genus Cyperus.
Resumo:
A. peregrina var. falcata form mutualistic symbiosis with arbuscular mycorrhizal fungus. An anatomical and ultrastructural study was carried out to analyze some aspects of this simbiotic association as well as some root features. The results evidenced the presence of fibers with non-lignified thicked secondary walls in the stele and sparse papillae on root surface. A. peregrina var. falcata mycorrhizas presented features of Arum-type (intercellular hyphae) and Paris-type (extensive coils) arbuscular mycorrhiza. Their general appearance with extraradical hyphae, intracellular coils, intercellular hyphae and arbuscules, is in agreement with arbuscular mycorrhizas of several plants. The ultrastructural observations showed that in intercellular hyphae and arbuscules vacuoles were dominant and that in rough endoplasmatic reticulum and small vesicles seems to be associated with arbuscule senescence process.
Resumo:
The ferns Anemia tomentosa (Sav.) Sw. var. anthriscifolia (Schrad.) Mickel and Anemia villosa Humb. & Bonpl. ex Willd. are widely associated with vegetation islands on rocky outcrops in Rio de Janeiro. Both species are desiccation tolerant. The leaf anatomy of these species was examined aiming to identify morphological characteristics that would allow the establishment of these species in water-scarce environments. The plants were harvested on "Pedra de Itacoatiara" and prepared according to the usual procedures. The petiole has a uniseriate epidermis with lignified cell walls, conical stegmata, and uniseriate multicelular and glandular trichomes. In A. villosa, the stomata protrude in a respiratory line. Under the epidermis the cells have thick, lignified walls. The parenchyma has phenolic compounds and starch grains. The petiole vascular bundles are surrounded by endodermis with Casparian strips and the xylem is V-shaped (A. villosa) or arc-shaped (A. tomentosa var. anthriscifolia). The leaf blades have a uniseriate epidermis with sinuous anticlinal and convex periclinal walls, conical stegmata and chloroplasts on both surfaces. The leaf margins of A. villosa have lignified cells. The guard cells of the stomata on the abaxial surface are on the same level or are raised above ordinary epidermal cells. Multicelular uniseriate trichomes and glandular hairs were observed. The dorsiventral mesophyll has loosely packed chlorenchyma with arm-shaped and H-shaped cells. The vascular bundles are surrounded by endodermis with Casparian strips and with parenchymatic extensions towards the epidermis. Anatomical results were analyzed considering the interaction of these plants with abiotic factors.
Resumo:
Chronic lung diseases, specifically bronchopulmonary dysplasia (BPD), are still causing mortality and morbidity amongst newborn infants. High protease activity has been suggested to have a deleterious role in oxygen-induced lung injuries. Cathepsin K (CatK) is a potent protease found in fetal lungs, degrading collagen and elastin. We hypothesized that CatK may be an important modulator of chronic lung injury in newborn infants and neonatal mice. First we measured CatK protein levels in repeated tracheal aspirate fluid samples from 13 intubated preterm infants during the first two weeks of life. The amount of CatK at 9-13 days was low in infants developing chronic lung disease. Consequently, we studied CatK mRNA expression in oxygen-exposed wild-type (WT) rats at postnatal day (PN) 14 and found decreased pulmonary mRNA expression of CatK in whole lung samples. Thereafter we demonstrated that CatK deficiency modifies lung development by accelerating the thinning of alveolar walls in newborn mice. In hyperoxia-exposed newborn mice CatK deficiency resulted in increased number of pulmonary foam cells, macrophages and amount of reduced glutathione in lung homogenates indicating intensified pulmonary oxidative stress and worse pulmonary outcome due to CatK deficiency. Conversely, transgenic overexpression of CatK caused slight enlargement of distal airspaces with increased alveolar chord length in room air in neonatal mice. While hyperoxic exposure inhibited alveolarization and resulted in enlarged airspaces in wild-type mice, these changes were significantly milder in CatK overexpressing mice at PN7. Finally, we showed that the expression of macrophage scavenger receptor 2 (MSR2) mRNA was down-regulated in oxygen-exposed CatK-deficient mice analyzed by microarray analysis. Our results demonstrate that CatK seems to participate in normal lung development and its expression is altered during pulmonary injury. In the presence of pulmonary risk factors, like high oxygen exposure, low amount of CatK may contribute to aggravated lung injury while sustained or slightly elevated amount of CatK may even protect the newborn lungs from excessive injury. Besides collagen degrading and antifibrotic function of CatK in the lungs, it is obvious that CatK may affect macrophage activity and modify oxidative stress response. In conclusion, pulmonary proteases, specifically CatK, have distinct roles in lung homeostasis and injury development, and although suggested, broad range inhibition of proteases may not be beneficial in newborn lung injury.
Resumo:
This paper reports on the extrafloral nectary (EFN) of Hibiscus pernambucensis, a native shrub species occurring in mangrove and restinga along Brazil's coastline. EFNs occur as furrows with a protuberant border on the abaxial surface veins of the leaf blade. Each nectary consists of numerous secretory multicellular trichomes, epidermal cells in palisade-like arrangements and non-vascularized parenchyma tissue. Nectar secretion is prolonged, since secretion starts in very young leaves and remains up to completely expanded leaves. Reduced sugars, lipids, and proteins were histochemically detected in all the nectary cells; phenolic substances were detected in the vacuoles of the epidermal palisade cells and in some secretory trichome cells. The secretory cells that constitute the body of trichomes have large nuclei, dense cytoplasm with numerous mitochondria, dictyosomes, scattered lipid droplets and plastids with different inclusions: protein, lipid droplets or starch grains; vacuoles with different sizes have membranous material, phenolic and lipophilic substances. The palisade cells show thick periclinal walls, reduced cytoplasm with voluminous lipid drops and developed vacuoles. The nectary parenchyma cells contain abundant plasmodesmata and cytoplasm with scattered lipid droplets, mitochondria, plastids with starch grains and endoplasmic reticulum. Mucilage idioblasts are common in the inner nectary parenchyma. Protoderm and ground meristem participate in the formation of EFN. Our data indicate that all nectary regions are involved in nectar production and secretion, constituting a functional unit. Longevity of the extrafloral nectaries is likely associated with the presence of mucilage idioblasts, which increases the capacity of the nectary parenchyma to store water.
Resumo:
The purpose of this work is to obtain a better understanding of behaviour of possible ultrasound appliance on fluid media mixing. The research is done in the regard to Newtonian and non-Newtonian fluids. The process of ultrasound appliance on liquids is modelled in COMSOL Multiphysics software. The influence of ultrasound using is introduced as waveform equation. Turbulence modelling is fulfilled by the k-ε model in Newtonian fluid. The modeling of ultrasound assisted mixing in non-Newtonian fluids is based on the power law. To verify modelling results two practical methods are used: Particle Image Velocimetry and measurements of mixing time. Particle Image Velocimetry allows capturing of velocity flow field continuously and presents detailed depiction of liquid dynamics. The second way of verification is the comparison of mixing time of homogeneity. Experimentally achievement of mixing time is done by conductivity measurements. In modelling part mixing time is achieved by special module of COMSOL Multiphysics – the transport of diluted species. Both practical and modelling parts show similar radial mechanism of fluid flow under ultrasound appliance – from the horn tip fluid moves to the bottom and along the walls goes back. Velocity profiles are similar in modelling and experimental part in the case of Newtonian fluid. In the case of non-Newtonian fluid velocity profiles do not agree. The development track of ultrasound-assisted mixing modelling is presented in the thesis.
Resumo:
This thesis focuses on flavonoids, a subgroup of phenolic compounds produced by plants, and how they affect the herbivorous larvae of lepidopterans and sawflies. The first part of the literature review examines different techniques to analyze the chemical structures of flavonoids and their concentrations in biological samples. These techniques include, for example, ultraviolet-visible spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. The second part of the literature review studies how phenolic compounds function in the metabolism of larvae. The harmful oxidation reactions of phenolic compounds in insect guts are also emphasized. In addition to the negative effects, many insect species have evolved the use of phenolic compounds for their own benefit. In the experimental part of the thesis, high concentrations of complex flavonoid oligoglycosides were found in the hemolymph (the circulatory fluid of insects) of birch and pine sawflies. The larvae produced these compounds from simple flavonoid precursors present in the birch leaves and pine needles. Flavonoid glycosides were also found in the cocoon walls of sawflies, which suggested that flavonoids were used in the construction of cocoons. The second part of the experimental work studied the modifications of phenolic compounds in conditions that mimicked the alkaline guts of lepidopteran larvae. It was found that the 24 plant species studied and their individual phenolic compounds had variable capacities to function as oxidative defenses in alkaline conditions. The excrements of lepidopteran and sawfly species were studied to see how different types of phenolics were processed by the larvae. These results suggested that phenolic compounds were oxidized, hydrolyzed, or modified in other ways during their passage through the digestive tract of the larvae.
Resumo:
The possible role of histamine receptors in the hippocampal formation on the exploratory motivation and emotionality of the rat was studied. An elevated asymmetric plus-maze composed of 4 different arms (no walls, single high wall, high and low walls and two high walls) arranged at 90o angles was used. The exploration score, considered to be an index of exploratory motivation, and the permanency score, considered to be an index of emotionality (anxiety), were determined. Histamine was administered locally into the ventral hippocampus at three different doses (9, 45 and 90 nmol). Another group of rats was also microinjected with 45 nmol of pyrilamine (a histamine H1 receptor antagonist) or ranitidine (a histamine H2 receptor antagonist) in addition to 9 nmol of histamine in order to identify the possible type of histamine receptor involved. Histamine administration significantly inhibited the exploration score and increased the permanency score at the doses of 9 and 45 nmol in two of four arms. These effects were completely blocked by the administration of either histamine receptor antagonist. The present results suggest that in the hippocampal formation histamine inhibits exploratory motivation and decreases emotionality by activating both types of histamine receptors. Also, the elevated asymmetric plus-maze appears to be a suitable technique to quantify exploration and possibly" anxiety"