920 resultados para steroid hormone
Resumo:
Histological analyses were made in order to evaluate the effects of the topic application of a synthetic juvenile hormone (JH-III Sigma) on the development of the venom glands in workers of Apis mellifera. Three experimental groups were used: the first received 1 μl of a dilution of the juvenile hormone in hexane (2μg/μl); the second group received 1 μl of hexane; and the third group, the control, did not receive any kind of treatment. The application was made on larvae at the beginning of the fifth instar and the glands were collected at different developmental stages. The results showed that the application of the diluted hormone, as well as the hexane alone, accelerated gland development in relation to the control group at all developmental stages studied. These data suggest that the juvenile hormone acts on the development of the venom gland; nevertheless, this action could be amplified by the effect of the solvent used in the present work, as well as in other studies concerning this matter.
Resumo:
The present investigation compares the protein electrophoreses profiles of the hypopharyngeal glands of 12 and 25 day old Apis mellifera workers, some of which were experimentally treated with an analogue of juvenile hormone in the moment of the emergence while others were not treated. According to the evaluation of the presented variations by four main bands, it is concluded that the analogue juvenile hormone changes the glandular genetic expression pattern, promoting the disappearance of two from the four main bands in 25 day old workers. The effect of this hormone is discussed as an hypopharyngeal maturation inductor, in synergetic action with the bee age acting early in the glandular cycle.
Resumo:
The use of natural active principals is widespread among a great proportion of the rural population, or by people who do not have easy access to medical assistance. These active principles are used as food or medicines, and even for purposes of contraception. It becomes necessary to establish a relationship between the folklore habits and current information on the nature of anti-fertility substances, and knowledge of their mechanisms. Anti-fertility agents may exert their actions in a number of areas, (hypothalamus, anterior pituitary, oviduct, uterus, and vagina), inhibiting synthesis and/or liberation of hormones (follicle-stimulating, luteinizing, and steroid hormones), ovulation, ovum transportation, and implantation process. Therefore, a review of literature was carried out, including of several plants used by women as abortifacient and anti-fertility agents to compare their effects with those obtained among laboratory animals.
Resumo:
The effects of breed and of recombinant bovine somatotropin (rbST) treatment on growth hormone gene expression were studied in young bulls. The experiment was completely randomized in a [2 × 2]-factorial arrangement, using two levels of rbst (0 or 250 mg/animal/14 days), and two breed groups (Nelore and Simmental x Nelore crossbred). A CDNA encoding Bos indicus growth hormone was cloned and sequenced for use as a probe in Northern and dot blot analyses. Compared to the Bos taurus structural gene, the Bos indicus CDNA was found to begin 21 bases downstream from the transcription initiation site and had only two discrepancies (C to T at position 144-His and T to C at position 354-Phe), without changes in the polypeptide sequence. However, two amino acid substitutions were found for Bubalus spp., which belong to the same tribe. The rbst treatment did not change any of the characteristics evaluated (body and pituitary gland weights, growth hormone MRNA expression level). Crossbred animals had significantly higher body weight and heavier pituitaries than Nelore cattle. Pituitary weight was proportional to body weight in both breed groups. Growth hormone MRNA expression in the pituitary was similar (P>0.075) for both breed and hormonal treatment groups, but was 31.9% higher in the pure Nelore group, suggesting that growth hormone gene transcription regulation differs among these breeds.
Resumo:
Broiler chicks aged 12 h after hatching were allotted according to a block design in a 7 x 2 factorial schedule of 14 treatments and four replications of 50 chicks each one. The main experimental factors were fasting for 0, 6, 12, 18, 24, 30, and 36 h after chick placement and sex. Independent of sex, fasting had a negative linear effect on weight and productivity of broilers at market age (42 d) without affecting feed conversion or mortality index. Groups subjected to 18 and 36 h of fasting after placement, corresponding to 30 and 48 h posthatching fasting, had lower biometrical values for small intestine (length, weight, and size; villus height; and crypt depth) than chicks fed immediately after placement. According to the Pearson test, BW of birds at 21 and 42 d were significantly correlated to BW at 7 d (r = 0.77) and 21 d (r = 0.45), respectively. Males performed better than females but had higher mortality rates. Fasting did not influence serum concentrations of corticosterone or sexual steroid hormones. Nevertheless, early signs of sexual dimorphism arose from the high estradiol (E2) concentration on female serum. Heterophil:lymphocyte ratio was not different among treatments, indicating that early fasting did not seem to be a stress factor 21 or 42 d after fasting. The results suggested a maximum fasting of 24 h after hatching in order to preserve broiler productivity at market age.
Resumo:
The aim of the present work was to verify the influence of the juvenile hormone (JH) applied on worker larvae of Apis mellifera 2 to 5 days old over the haemolymph total protein and electrophoretic pattern. Each larvae received topical applications of 1 ml of a solution of JH in hexane (1 μg/ml) on their 2 nd, 3 rd 4 th and 5 th day after hatching and had the amount and electrophoretic pattern of proteins from the haemolymph analyzed during the remaining days of their life. As a control, haemolymph of larvae of the same age that did not receive any kind of treatment was analyzed. The results show that the application of JH on larvae 3 or more days old affect the amount and electrophoretic pattern of the proteins, with this effect lasting through the subsequent days.
Resumo:
Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates. Other potential clinical applications include improving pregnancy rates from frozen semen, treatment of subfertility in stallions and mares, and induction of ovulation in transitional mares. The objective of this study was to evaluate the efficacy of purified equine follicle stimulating hormone (eFSH; Bioniche Animal Health USA, Inc., Athens, GA) in inducing superovulation in cycling mares. In the first experiment, 49 normal, cycling mares were used in a study at Colorado State University. Mares were assigned to 1 of 3 groups: group 1, controls (n = 29) and groups 2 and 3, eFSH-treated (n = 10/group). Treated mares were administered 25 mg of eFSH twice daily beginning 5 or 6 days after ovulation (group 2). Mares received 250 (of cloprostenol on the second day of eFSH treatment. Administration of eFSH continued until the majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting on day 5 or 6. The treatment regimen was identical to that of group 2. Mares in all 3 groups were bred with semen from 1 of 4 stallions. Pregnancy status was determined at 14 to 16 days after ovulation. In experiment 2, 16 light-horse mares were used during the physiologic breeding season in Brazil. On the first cycle, mares served as controls, and on the second cycle, mares were administered 12 mg of eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time human chorionic gonadotropin (hCG) was administered. Mares were inseminated on both cycles, and embryo collection attempts were performed 7 or 8 days after ovulation. Mares treated with 25 mg of eFSH developed a greater number of follicles (35 mm) and ovulated a greater number of follicles than control mares. However, the number of pregnancies obtained per mare was not different between control mares and those receiving 25 mg of eFSH twice daily. Mares treated with 12 mg of eFSH and administered either hCG or deslorelin also developed more follicles than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles than control mares, whereas the number of ovulations from mares receiving eFSH followed by deslorelin was similar to that of control mares. Pregnancy rate for mares induced to ovulate with hCG was higher than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of the controls. Overall, 80% of mares administered eFSH had multiple ovulations compared with 10.3% of the control mares. In experiment 2, the number of large follicles was greater in the eFSH-treated cycle than the previous untreated cycle. In addition, the number of ovulations during the cycle in which mares were treated with eFSH was greater (3.6) than for the control cycle (1.0). The average number of embryos recovered per mare for the eFSH cycle (1.9 ± 0.3) was greater than the embryo recovery rate for the control cycle (0.5 ± 0.3). In summary, the highest ovulation and the highest pregnancy and embryo recovery rates were obtained after administration of 12 mg of eFSH twice daily followed by 2500 IU of hCG. Superovulation with eFSH increased pregnancy rate and embryo recovery rate and, thus, the efficiency of the embryo transfer program.
Resumo:
Twelve-day-old and 25-day-old Apis mellifera workers were treated or not treated with juvenile hormone at the moment of emergence and reared in the colony without brood. Having the brood interference apart, the hormone effect on the hypopharyngeal glands protein expression was determined through the electrophoretical protein profiles of the both groups of bees. In those conditions, the hormone induced changes that were different from the control. Protein bands of 66 and 48 kDa were intensified in the 12-day-old bees, whereas band of 42 kDa was reduced in the 25-day-old bees. That indicated a different effect of the juvenile hormone in the function of bee aging, which promoted a glandular protein activation in the young bees and, in contrast, an inhibitory action in the 25-day-old bees workers.
Resumo:
The present investigation analyzed the influence of Juvenile Hormone (JH) on the venom glands of Apis mellifera workers through protein dosage and electrophoresis of venom gland extracts of newly emerged workers which were treated with 1 μl JH dissolved in hexane, in concentration of 2μg/μl. Newly emerged workers non-treated and treated with 1 μl hexane were the controls. Both JH and hexane provoke quantitative changes on the gland protein titre and on the protein electrophoretic profile. The disappearance of protein bands in the venom gland extracts of 14 day-old treated workers, a situation normally found only in 35 day-old non-treated workers, suggests that the JH treatment induces a precocious maturation of the worker venom gland.
Resumo:
Bone tumor incidence in women peaks at age 50-60, coinciding with the menopause. That estrogen (E2) and triiodothyronine (T3) interact in bone metabolism has been well established. However, few data on the action of these hormones are available. Our purpose was to determine the role of E2 and T3 in the expression of bone activity markers, namely alkaline phosphatase (AP) and receptor activator of nuclear factor κB ligand (RANKL). Two osteosarcoma cell lines: MG-63 (which has both estrogen (ER) and thyroid hormone (TR) receptors) and SaOs-29 (ER receptors only) were treated with infraphysiological E2 associated with T3 at infraphysiological, physiological, and supraphysiological concentrations. Real-time RT-PCR was used for expression analysis. Our results show that, in MG-63 cells, infraphysiological E2 associated with supraphysiological T3 increases AP expression and decreases RANKL expression, while infraphysiological E2 associated with either physiological or supraphysiological T3 decreases both AP and RANKL expression. On the other hand, in SaOs-2 cells, the same hormone combinations had no significant effect on the markers' expression. Thus, the analysis of hormone receptors was shown to be crucial for the assessment of tumor potential growth in the face of hormonal changes. Special care should be provided to patients with T3 and E2 hormone receptors that may increase tumor growth. Copyright © 2007 John Wiley & Sons, Ltd.
Resumo:
Background: Fluctuations of estradiol and progesterone levels caused by the menstrual cycle worsen asthma symptoms. Conflicting data are reported in literature regarding pro and anti-inflammatory properties of estradiol and progesterone.Methods: Female Wistar rats were ovalbumin (OVA) sensitized 1 day after resection of the ovaries (OVx). Control group consisted of sensitized-rats with intact ovaries (Sham-OVx). Allergic challenge was performed by aerosol (OVA 1%, 15 min) two weeks later. Twenty four hours after challenge, BAL, bone marrow and total blood cells were counted. Lung tissues were used as explants, for expontaneous cytokine secretion in vitro or for immunostaining of E-selectin.Results: We observed an exacerbated cell recruitment into the lungs of OVx rats, reduced blood leukocytes counting and increased the number of bone marrow cells. Estradiol-treated OVx allergic rats reduced, and those treated with progesterone increased, respectively, the number of cells in the BAL and bone marrow. Lungs of OVx allergic rats significantly increased the E-selectin expression, an effect prevented by estradiol but not by progesterone treatment. Systemically, estradiol treatment increased the number of peripheral blood leukocytes in OVx allergic rats when compared to non treated-OVx allergic rats. Cultured-BAL cells of OVx allergic rats released elevated amounts of LTB4 and nitrites while bone marrow cells increased the release of TNF-α and nitrites. Estradiol treatment of OVx allergic rats was associated with a decreased release of TNF-α, IL-10, LTB4 and nitrites by bone marrow cells incubates. In contrast, estradiol caused an increase in IL-10 and NO release by cultured-BAL cells. Progesterone significantly increased TNF- α by cultured BAL cells and bone marrow cells.Conclusions: Data presented here suggest that upon hormonal oscillations the immune sensitization might trigger an allergic lung inflammation whose phenotype is under control of estradiol. Our data could contribute to the understanding of the protective role of estradiol in some cases of asthma symptoms in fertile ans post-menopausal women clinically observed. © 2010 de Oliveira et al; licensee BioMed Central Ltd.
Resumo:
Melasma is a common acquired symmetrical hypermelanosis characterized by irregular light- to dark-brown macules on sun-exposed skin areas. The literature shows few studies on its physiopathogeny. However, changes in α-melanocyte stimulating hormone (α-MSH) secretion and melanocortin-1 receptor (MC1-R) expression may play a role to trigger this condition. Biopsies were taken from both melasma skin and adjacent perilesional normal skin of 44 patients. The biopsies were submitted for hematoxylin and eosin and Fontana-Masson staining and immunohistochemistry with Melan-A, α-MSH, and MC1-R, and processed for transmission electron microscopy. In some cases, they were submitted to MC1-R gene expression analysis by real-time polymerase chain reaction. Increased lymphohistiocytic infiltrate and solar elastosis, higher epidermal melanin were observed in melasma skin. Electron microscopy revealed a greater number of mature melanosomes in keratinocytes and melanocytes, and more prominent cytoplasmic organelles in melasma skin. There was no difference in melanocyte number between areas. However, melanocytes were larger and more dendritic in melasma skin. Immunohistochemistry with α-MSH and MC1-R showed significant labeling in melasmic epidermis but MC1-R messenger ribonucleic acid (RNAm) did not show significant quantitative difference between melasma and normal skin. © 2010 by Lippincott Williams & Wilkins.
Resumo:
Background: Although there is some information in the literature discussing differences of the estrous cycle of Bos taurus and Bos indicus cattle, most of the data derive from studies performed in temperate climate countries, under environmental and nutritional conditions very different than those found in tropical countries. Moreover, the physiological basis for understanding the differences between Bos taurus and Bos indicus estrous cycles are still unknown. This review explores the physiological and metabolic bases for understanding the key differences between the Bos taurus and Bos indicus estrous cycle. Moreover, it presents recent results of studies that have directly compared reproductive variables between Zebu and European cattle. Review: The knowledge of reproductive physiology, especially the differences between Bos taurus and Bos indicus, is important for the development and application of different techniques of reproductive management in cattle. In this regard, overall, Bos indicus have a greater number of small ovarian follicles and ovulatory follicles are smaller as compared to Bos taurus. Consequently, Zebu cattle also have smaller corpus luteum (CL). Nevertheless, circulating concentrations of steroid and metabolic hormones are not necessarily higher in European cattle. In fact, some studies have shown that despite ovulating smaller follicles and having smaller CL, Bos indicus cows or heifers have higher circulating concentrations of estradiol, progesterone, insulin and IGF-I compared to Bos taurus females. In addition, there are also substantial differences between Bos indicus and Bos taurus cattle in relation to follicle size at the time of selection of the dominant follicle. Conclusion: Data from very recent studies performed in Brazil have corroborated results from previous reports that have observed substantial differences in the estrous cycle variables of Bos indicus versus Bos taurus cattle. Those differences are probably related to distinct metabolism and metabolic hormone concentrations between Zebu and European cattle. This increased knowledge will allow for the establishment of more adequate reproductive management protocols in both breeds of cattle.
Resumo:
Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T 3) or antagonist (NH3). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/ deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, Cterminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T 3, but not NH3, increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T 3 but not NH3.Wepresent data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes. (Molecular Endocrinology 25: 15-31, 2011). Copyright © 2011 by The Endocrine Society.