867 resultados para stepped wedge
Resumo:
We study the effect of a structural nanoconstriction on the coherent transport properties of otherwise ideal zigzag-edged infinitely long graphene ribbons. The electronic structure is calculated with the standard one-orbital tight-binding model and the linear conductance is obtained using the Landauer formula. We find that, since the zero-bias current is carried in the bulk of the ribbon, this is very robust with respect to a variety of constriction geometries and edge defects. In contrast, the curve of zero-bias conductance versus gate voltage departs from the (2n+1)e2∕h staircase of the ideal case as soon as a single atom is removed from the sample. We also find that wedge-shaped constrictions can present nonconducting states fully localized in the constriction close to the Fermi energy. The interest of these localized states in regards to the formation of quantum dots in graphene is discussed.
Resumo:
The origin of the Numidian Formation (latest Oligocene to middle Miocene), characterized by ultra-mature quartzose arenites with abundant well-rounded frosted quartz grains, remains controversial. This formation, sedimented in the external domain of the Maghrebian Flysch Basin, displays three characteristic stratigraphic members with marked longitudinal (proximal–distal) and transverse (along-chain) variations with palaeogeographical importance. The origin of the Numidian supply is related to the outward tectogenetic propagation when a forebulge evolved in the African foreland, leading to the erosion of African cratonic areas rich in quartzose arenites (Nubian Sandstone-like). The ages of the Numidian Formation checked by Betic, Maghrebian and Southern Apennine data suggest a timing for the accretionary orogenic wedge, earlier in the Betic-Rifian Arc (after middle Burdigalian), later in the Algerian-Tunisian Tell (after late Burdigalian) and afterwards in Sicily and the Southern Apennines (after Langhian). A geodynamic evolutionary model for the central-western Mediterranean is proposed.
Resumo:
The location of the La Galite Archipelago on the Internal/External Zones of the Maghrebian Chain holds strong interest for the reconstruction of the geodynamic evolution of the Mesomediterranean Microplate-Africa Plate Boundary Zone. New stratigraphic and petrographic data on sedimentary successions intruded upon by plutonic rocks enabled a better definition of the palaeogeographic and palaeotectonic evolutionary model of the area during the early-middle Miocene. The lower Miocene sedimentary units (La Galite Flysch and Numidian-like Flysch) belong to the Mauritanian (internal) and Massylian (external) sub-Domains of the Maghrebian Chain, respectively. These deposits are related to a typical syn-orogenic deposition in the Maghrebian Flysch Basin Domain, successively backthrusted above the internal units. The backthrusting age is post-Burdigalian (probably Langhian-Serravallian) and the compressional phase represents the last stage in the building of the accretionary wedge of the Maghrebian orogen. These flysch units may be co-relatable to the similar well-known formations along the Maghrebian and Betic Chains. The emplacement of potassic peraluminous magmatism, caused local metamorphism in the Late Serravallian-Early Tortonian (14–10 Ma), after the last compressional phase (backthrusting), during an extensional tectonic event. This extensional phase is probably due to the opening of a slab break-off in the deep subduction system. La Galite Archipelago represents a portion of the Maghrebian Flysch Basin tectonically emplaced above the southern margin of the “Mesomediterranean Microplate” which separated the Piemontese-Ligurian Ocean from a southern oceanic branch of the Tethys (i.e. the Maghrebian Flysch Basin). The possible presence of an imbricate thrust system between La Galite Archipelago and northern Tunisia may be useful to exclude the petroleum exploration from the deformed sectors of the offshore area considered.
Resumo:
Experiments have been carried out in sulfuric and perchloric acid solutions on Pt(S)[n(110) × (100)] electrodes. The comparison between the two different electrolytic media reveals an important influence of the anion in the voltammetric features. Total charge curves have been obtained with the CO charge displacement method in combination with voltammetric measurements. From these curves, the dependence of the pztc with the step density and the strength of the anion adsorption have been analyzed. The problem of the so-called third peak is treated for a series of electrodes that contain (110) terraces, revealing the requirement of (110) domains for occurrence of this adsorption state.
Resumo:
The electroreduction of nitrate on Pt(1 0 0) electrodes in phosphate buffer neutral solution, pH 7.2, is reported. The sensitivity of the reaction to the crystallographic order of the surface is studied through the controlled introduction of defects by using stepped surfaces with (1 0 0) terraces of different length separated by monoatomic steps, either with (1 1 1) or (1 1 0) symmetry. The results of this study show that nitrate reduction occurs mainly on the well defined (1 0 0) terraces in the potential region where H adsorption starts to decrease, allowing the nitrate anion to access the surface. Adsorbed NO has been detected as a stable intermediate in this media. An oxidation process observed at 0.8 V has been identified as leading to the formation of adsorbed NO and being responsible for a secondary reduction process observed in the subsequent negative scan. Using in situ FTIRS, ammonium was found to be the main product of nitrate reduction. This species can be oxidized at high potentials resulting in adsorbed NO and nitrate (probably with nitrite as intermediate).
Resumo:
The electrochemical reactivity of catechol-derived adlayers is reported at platinum (Pt) single-crystal electrodes. Pt(111) and stepped vicinal surfaces are used as model surfaces possessing well-ordered nanometer-sized Pt(111) terraces ranging from 0.4 to 12 nm. The electrochemical experiments were designed to probe how the control of monatomic step-density and of atomic-level step structure can be used to modulate molecule–molecule interactions during self-assembly of aromatic-derived organic monolayers at metallic single-crystal electrode surfaces. A hard sphere model of surfaces and a simplified band formation model are used as a theoretical framework for interpretation of experimental results. The experimental results reveal (i) that supramolecular electrochemical effects may be confined, propagated, or modulated by the choice of atomic level crystallographic features (i.e.monatomic steps), deliberately introduced at metallic substrate surfaces, suggesting (ii) that substrate-defect engineering may be used to tune the macroscopic electronic properties of aromatic molecular adlayers and of smaller molecular aggregates.
Resumo:
The oxidation of ethanol (EtOH) at Pt(111) electrodes is dominated by the 4e path leading to acetic acid. The inclusion of surface defects such as those present on stepped surfaces leads to an increase of the reactivity towards the most desirable 12e path leading to CO2 as final product. This path is also favored when the methyl group is more oxidized, as in the case of ethylene glycol (EG) that spontaneously decomposes to CO on Pt(111) electrodes, thus showing a more effective breaking of the C-C bond. Some trends in reactivity can be envisaged when other derivative molecules are compared at well-ordered electrodes. This strategy was used in the past, but the improvement in the electrode pretreatment and the overall information available on the subject suggest that relevant information is still missing.
Resumo:
We address in this paper a voltammetric study of the charge transfer processes characteristic of Pt(1 0 0) and vicinal surfaces in alkaline media. The electrochemical behavior of a series of stepped surfaces of the type Pt(S)[n(1 0 0) × (1 1 1)] has been characterized using cyclic voltammetry at different pHs, charge displacement measurements and FTIR experiments for adsorbed CO. The results from these techniques allow assigning the different peaks appearing in the voltammogram to hydrogen and/or OH adsorption on the different sites of these surfaces, namely, terrace and step sites. Additionally, the potential of zero total charge (pztc) of the electrodes was determined. The resulting pztc values shift to more negative values when the step density increases on the surface up to n = 5. FTIR spectroscopy experiments have been used to monitor the adsorption of CO on the different surfaces as well as the consequent CO oxidation, accompanying a positive potential sweep. The oxidation of adsorbed CO on (1 0 0) terraces is catalyzed by the presence of the (1 1 1) steps. The FTIR spectra revealed that CO is mostly bonded in bridge configuration at low potentials interconverting to on-top when the electrode potential is increased.
Resumo:
Using a combination of experimental and computational methods, mainly FTIR and DFT calculations, new insights are provided here in order to better understand the cleavage of the C–C bond taking place during the complete oxidation of ethanol on platinum stepped surfaces. First, new experimental results pointing out that platinum stepped surfaces having (111) terraces promote the C–C bond breaking are presented. Second, it is computationally shown that the special adsorption properties of the atoms in the step are able to promote the C–C scission, provided that no other adsorbed species are present on the step, which is in agreement with the experimental results. In comparison with the (111) terrace, the cleavage of the C–C bond on the step has a significantly lower activation energy, which would provide an explanation for the observed experimental results. Finally, reactivity differences under acidic and alkaline conditions are discussed using the new experimental and theoretical evidence.
Resumo:
Leather hardcover notebook containing a handwritten copy of John Winthrop's course of experimental and philosophical lectures presented between March 10, 1746 and June 16, 1746. The first one-hundred pages of the volume are divided into twenty chapters which were presented in thirty-three lectures. The chapters contain text and diagrams on mechanical powers, the lever, the pulley, the axis in peritrochio, the inclined plane, the wedge, the screw, compound engines, the laws of motion, gravity, attraction of cohesion, the power of repulsion, magnetism, fluids, electricity, opticks, and astronomy. There is a five-page addenda to the course summary added in 1747, and a sixty-page text titled "The Method of Astronomical calculations" containing thirteen problems related to calculating distances with a list of astronomical characters, and followed with charts related to the eclipse of Jupiter's satellites.
Resumo:
Thesis (Master, Mathematics & Statistics) -- Queen's University, 2016-07-04 20:27:20.386
Resumo:
In recent weeks, Russia has stepped up its efforts to prevent a group of former Soviet republics from tightening their relations with the European Union. The intensification of these efforts comes ahead of the upcoming Eastern Partnership summit, scheduled to take place in Vilnius on 28-29 November. It is expected that during the summit Kiev will sign the EU-Ukraine Association Agreement (AA) initialled in March 2012, including an agreement for a Deep and Comprehensive Free Trade Area (DCFTA). Meanwhile, Moldova, Armenia and Georgia are expected to initial similar documents, effectively accepting their terms and conditions, and paving the way for their official signing in the near future. Moscow has always viewed the relations between the EU and the post-Soviet states as a threat to its own influence in the region. Consequently, any attempts to tighten these relations have been actively opposed by Russia. The EU’s Eastern Partnership programme, launched in 2009, has posed a particular challenge to Moscow’s policies in the region.. Russia responded by rolling out a Eurasian integration project, which began in 2010 with the establishment of the Customs Union of Russia, Kazakhstan and Belarus, and is expected to culminate in the establishment of the Eurasian Economic Union by 2015. Moscow’s overarching objective has been to persuade the countries in the region, especially Ukraine, to adopt an unambiguously pro-Russian geopolitical stance and to join the integration project proposed by the Kremlin. The Russian government hopes that this would permanently place these states in Moscow’s sphere of influence and at the same time prevent them from developing closer relations with Brussels. Russia has regularly taken actions aimed at showcasing the benefits of integration with the Customs Union (particularly, by promising preferential pricing of Russian energy resources) and at the same time it has adopted measures highlighting the pitfalls of retaining a pro-European orientation (mainly by imposing occasional trade sanctions). The upcoming summit in Vilnius, during which Ukraine, Moldova, Armenia and Georgia could lock themselves on to a pro-European course, has spurred Moscow to intensify its efforts to torpedo a successful outcome of the Vilnius meeting, with a view to slowing down or even blocking the possibility of closer cooperation between the EU and the former Soviet republics.
Resumo:
In late March and early April, the US Air Forces in Europe (USAFE) held an exercise in Estonia, during which US F-16s destroyed ground targets in an Estonian firing range. Around the same time the Americans held a drill with the Swedish and Finnish Air Forces over the Baltic Sea. The United States has been playing a leading role in the process of strengthening NATO’s presence in the Baltic states. As far as the Western European allies are concerned, Germany will follow in the footsteps of Denmark and the United Kingdom, both of which made significant military contributions to the strengthening of the allied presence in 2014, and will deploy the largest number of troops in 2015. Non-aligned Sweden and Finland, key for the performance of NATO operations in the Baltic states, have been emphasising their military and political readiness to co-operate with NATO in the event of potential crises or conflicts. Comparing NATO ‘s military presence in the Baltic states before and after the outbreak of the Russian intervention in Ukraine, it is clear that NATO has stepped up its engagement considerably. However, its scope is still relatively small, given the much larger military potential and mobilisation capacity of Russia. Moreover, the message sent by NATO’s actions may be diminished by the political, military and financial constraints faced by the allies and Sweden and Finland. It seems that the greatest risk to the military security of the Baltic states currently appears to be the possibility that Russia could wrongly assess the reliability of NATO’s security guarantees.
Resumo:
The Russian annexation of Crimea in 2014 put a stop to the gradual scaling down of US military engagement in Europe, a policy that the United States had pursued since the end of the Cold War. The Russian-Ukrainian conflict became a watershed for the US perceptions of European security as Washington started to see the threat of a conflict between Russia and a NATO member as more probable. The United States decided that – despite the mounting challenges in the Pacific region and its involvement in conflicts in the Middle East – it had to invest more in European security. The US has stepped up the intensity of joint drills with the allies and the activities of its forces in Europe. However, its support for the allies has been subject to various limitations and should be treated as a political signal to Moscow, rather than an element in a broader strategy. The future of the policy of strengthening the eastern flank will depend on the outcome of the US presidential elections in November and on developments in the bilateral relations between Washington and Moscow.
Resumo:
We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the stable wedge test, showing negligible internal deformation and maintaining the initial surface slope upon horizontal translation over a frictional interface. Eight codes participated in the unstable wedge test that examines the evolution of a wedge by thrust formation from a subcritical state to the critical taper geometry. The critical taper is recovered, but the models show two deformation modes characterised by either mainly forward dipping thrusts or a series of thrust pop-ups. We speculate that the two modes are caused by differences in effective basal boundary friction related to different algorithms for modelling boundary friction. The third experiment examines stacking of forward thrusts that are translated upward along a backward thrust. The results of the seven codes that run this experiment show variability in deformation style, number of thrusts, thrust dip angles and surface slope. Overall, our experiments show that numerical models run with different numerical techniques can successfully simulate laboratory brittle thrust wedge models at the cm-scale. In more detail, however, we find that it is challenging to reproduce sandbox-type setups numerically, because of frictional boundary conditions and velocity discontinuities. We recommend that future numerical-analogue comparisons use simple boundary conditions and that the numerical Earth Science community defines a plasticity test to resolve the variability in model shear zones.