816 resultados para step utility
Resumo:
In this paper it is proposed a novel hybrid three-phase rectifier capable to achieve high input power factor (PF), and low total harmonic distortion in the input currents (THDI). The proposed hybrid high power rectifier is composed by a standard three-phase 6-pulses diode rectifier (Graetz bridge) with a parallel connection of single-phase Boost rectifiers in each three-phase rectifier leg. Such topology results in a structure capable of programming the input current waveform and providing conditions for obtaining high input power factor and low harmonic current distortion. In order to validate the proposed hybrid rectifier, this paper describes its principles of operation, with detailed experimental results and discussions on power rating of the required Boost converters as related to the desired total harmonic current distortion. It is demonstrated that only a fraction of the output power is processed through the Boost converters, making the proposed solution economically viable for very high power installations, with fast pay back of the investment. Moreover, retrofitting to existing installations is also feasible since the parallel path can be easily controlled by integration with the existing de-link. A prototype rated at 6 kW has been implemented in laboratory and fully demonstrated its operation, performance and feasibility to high power applications. © 2005 IEEE.
Resumo:
With the considerable increase of the losses in electric utilities of developing countries, such as Brazil, there is an investigation for loss calculation methodologies, considering both technical (inherent of the system) and non-technical (usually associated to the electricity theft) losses. In general, all distribution networks know the load factor, obtained by measuring parameters directly from the network. However, the loss factor, important for the energy loss cost calculation, can only be obtained in a laborious way. Consequently, several formulas have been developed for obtaining the loss factor. Generally, it is used the expression that relates both factors, through the use of a coefficient k. Last reviews introduce a range of factor k within 0.04 - 0.30. In this work, an analysis with real life load curves is presented, determining new values for the coefficient k in a Brazilian electric utility. © 2006 IEEE.
Resumo:
The aim of this study was to evaluate the efficacy of a pouring technique for implant-supported prostheses impressions. A metallic matrix (control group) with two implants positioned at 90 and 65 degrees was fabricated. The matrix was submitted to the direct transfer impression technique. In group CP (conventional pouring - n = 10), casts were obtained by the conventional pouring technique. In group EP (experimental pouring - n = 10), the analogs were embraced with latex tubes before the first pouring and then submitted to a second pouring. Vertical misfit and implants/analogs inclinations were evaluated. Data were analyzed by analysis of variance and Tukey's test (p < .05). Results demonstrated significant difference (p < .05) between control and experimental groups for misfit measurement in perpendicular implant/analog and between control group and group EP in leaning implant/analog. Considering inclination, there were significant differences (p < .05) between control and experimental groups for leaning analogs. Independently of the pouring technique, perpendicular implants produced more accurate casts.
Resumo:
Multipulse rectifier topologies based on autoconnections, or differential connections, are more and more applied as interface stages between the mains and power converters. These topologies mitigate many low-order current harmonics in the utility, reducing the THD (total harmonic distortion) and increasing the power factor. This paper presents a mathematical model based on phasor diagrams, that results in a single expression able to unify all differential topologies connections (Delta and Wye), for both step-up or step-down autotransformers, for 12 and 18-pulse AC-DC converters. The proposed family of converters can be designed for any relationship between the input voltage and the load voltage. An immediate application would be the retrofit, i.e. to replace a conventional rectifier with poor quality of the processed energy by the 12 or 18 pulses rectifier with Wye or Delta-differential connection. The design procedure, simple and fast, is developed and tested for a prototype rating 6 kW and 250 V on the DC load © 2010 IEEE.
Resumo:
Multipulse rectifier topologies based on auto-connections or differential connections, are more and more applied as interface stages between the mains and power converters. These topologies are becoming increasingly attractive not only for robustness, but to mitigate many low order current harmonics in the utility, reducing the total harmonic distortion of the line currents (THDi) and increasing the power factor requirements. Unlike isolated connections (delta-wye, zigzag, etc.), when the differential transformer is employed, most of the energy required by the load is directly conducted through the windings. Thus, only a small fraction of the kVA is processed by the magnetic core. This feature increases the power density of the converter. This paper presents a mathematical model based on phasor diagrams, which results in a single expression able to merge all differential connections (wye and delta), for both step-up and step-down rectifiers for 12 or 18 pulses. The proposed family of converters can be designed for any relationship between the line input voltage and the DC voltage, unlike the conventional phase-shift voltage connections. An immediate application would be the retrofit, i.e. to replace a conventional rectifier with poor quality of the processed energy by the 12 or 18-pulse rectifiers with Wye or Delta-differential connections, keeping the original values for the input and load voltages. The simple and fast design procedure is developed and tested for a prototype rating 6 kW and 400 V on DC load.
Resumo:
Manual del sistema QUANTUM desarrollado para controlar la recepción y entrega de cuestionarios de una encuesta, por microcomputador, usando dBASE III.
Resumo:
This paper presents a pulsewidth modulation dc-dc nonisolated buck converter using the three-state switching cell, constituted by two active switches, two diodes, and two coupled inductors. Only part of the load power is processed by the active switches, reducing the peak current through the switches to half of the load current, as higher power levels can then be achieved by the proposed topology. The volume of reactive elements, i.e., inductors and capacitors, is also decreased since the ripple frequency of the output voltage is twice the switching frequency. Due to the intrinsic characteristics of the topology, total losses are distributed among all semiconductors. Another advantage of this converter is the reduced region for discontinuous conduction mode when compared to the conventional buck converter or, in other words, the operation range in continuous conduction mode is increased, as demonstrated by the static gain plot. The theoretical approach is detailed through qualitative and quantitative analyses by the application of the three-state switching cell to the buck converter operating in nonoverlapping mode $(D < 0.5)$. Besides, the mathematical analysis and development of an experimental prototype rated at 1 kW are carried out. The main experimental results are presented and adequately discussed to clearly identify its claimed advantages. © 1986-2012 IEEE.
Resumo:
Includes bibliography
Resumo:
Background: The Stroke remains one of the major chronic diseases worldwide, and is considered a major cause of disability, which results not only in persistent neurological deficits, but also in the high physical deconditioning, nevertheless there are not many forms of assessing functional capacity in this population. We aimed to investigate the feasibility of the Six Minute Walk Teste and the Six-Minute Step Test (6MST) in post-stroke patients and compare the behavior of physiological variables during the 6MST and the Six-Minute Walk Test (6MWT), by correlating the functional performance obtained in both tests. Method. The 6MWT was carried out according to the American Thoracic Society (ATS) and the 6MST was performed in six minutes in order to compare it to the 6MWT in a 20 cm step. Was included post-stroke individuals able to walk without aid. All of them did the 6MWT and the 6MST. Results: 12 patients participated in the study. There was no statistical difference in the parameters analyzed when tests were compared. There was poor correlation between the functional performance in both tests. Conclusion: The 6MWT and the 6MST is feasible for post-stroke patients and physiological responses are equal during the performance of both tests. However, there was no correlation with respect to functional performance, which was assessed by the distance walked in the 6MWT and by the number of steps climbed in the 6MST. © 2013 da Silva et al.; licensee BioMed Central Ltd.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Includes bibliography