849 resultados para spatio-temporal characteristics
Resumo:
Este estudo investigou as tomadas de decisões de jogadores dentro da grande área do futebol com base em variáveis espaciais e espaço-temporais de coordenações interpessoal e extrapessoal. Participaram do estudo 150 jogadores do sexo masculino, com idade entre 18 e 38 anos, e experiência de prática neste esporte de, no mínimo, 7 anos. Foram filmados 12 jogos de futebol de um campeonato amador na Colômbia. As imagens capturadas foram analisadas através do software TACTO, e as variáveis consideradas para análise foram as seguintes: i) ângulo de chute, formado por vetores ligando o jogador com posse de bola a dois componentes do jogo que geravam uma lacuna no gol; ii) ângulo A de passe, composto por vetores conectando o portador da bola ao seu marcador mais próximo e ao seu companheiro de equipe; iii) ângulo B de passe, formado por vetores ligando o portador da bola ao seu companheiro de equipe e ao marcador mais próximo dele; iv) distância interpessoal, caracterizada pela distância entre o jogador com posse de bola e seu defensor mais próximo; v) velocidade e variabilidade relacionadas às mudanças em cada uma dessas medidas. Essas variáveis foram comparadas em relação a situações de chute, passe e drible. Os resultados revelaram que, em relação à decisão de chutar, o ângulo de chute representando a interação entre as possibilidades de completá-lo e de o mesmo ser interceptado, diferiu do mesmo ângulo em que as decisões de passe e drible foram tomadas; e, na decisão de driblar, a distância interpessoal apresentou diferenças com as situações em que o passe foi executado. Concluiu-se que, no caso do chute ao gol e o drible, os ângulos de chute e distâncias interpessoais, respectivamente, funcionaram como variáveis informacionais de coordenações interpessoal e extrapessoal importantes para as tomadas de decisão
Resumo:
A utilização de Bromélias tem sido crescente no mercado de plantas onamentais, por outro lado, muitas espécies encontram-se ameaçadas, grande parte pelos impactos humanos no ambiente. Aechmea correia-araujoi E. Pereira & Moutinho, Aechmea gamossepala Wittm, Vriesea ensiformis (Vell.) Beer e Vriesea saundersii (Carrière) E. Morren ex Mez, espécies nativas da Mata Atlântica brasileira, têm sido alvo de extrativismo. Informações básicas sobre a espécie são essenciais para subsidiar a condução de programas de conservação e melhoramento genético, que aliados a ferramentas biotecnológicas permitem a incorporação de estratégias inovadoras aos métodos de melhoramento. Neste sentido, o objetivo do presente trabalho foi descrever essas espécies, quanto à micromorfologia floral, aspectos reprodutivos envolvidos no processo de polinização, desenvolvimento floral e deesenvolvimento gametofítico, como mecanismo de preservação e produção comercial. A caracterização morfológica e anatômica das flores das espécies de Aechmea e Vriesea contribuiu para a compreensão do processo reprodutivo. As espécies apresentam grãos de pólen com alta capacidade reprodutiva, viabilidade polínica superior a 93%, germinação in vitro maior que 80% e o estigma apresenta-se receptivo da antese ao final do dia. A ontogênese floral de A. correia-araujoi é centrípeta, os primórdios desenvolvem-se na ordem, sépala, pétala, androceu e gineceu. O apêndice petalar é formado na fase final do desenvolvimento. O primórdio de óvulo tem origem placentária e caráter trizonal, o óvulo é anátropo, bitegumentado e crassinucelado. O meristema floral de A. gamosepala se desenvolve de forma centrípeta, de forma unidirecional reversa. O estigma diferencia-se na fase inicial do desenvolvimento e os apêndices petalares, na fase final. O óvulo é anátropo, crassinucelado, bitegumentado, tétrade linear, megásporo calazal funcional, desenvolvimento tipo monospórico e Polygonum. As anteras são bitecas, tetraesporangiadas, com tapete secretor. Botões florais de 8,7 - 13,0 mm são indicados no estudo de embriogênese a partir de micrósporo. As alterações celulares e o padrão de distribuição de pectinas e AGPs foram caracterizadas por análise citoquímica com azul de toluidina, KI e DAPI e imunocitoquímica por imunofluorescência com os anticorpos para RNA, pectinas esterificadas (JIM7), não esterificadas (JIM5) e AGPs (LM2, LM6, MAC207, JIM13, JIM14) e analisadas por microscopia de fluorescência. Foram caracterizados padrões de distribuição espaço-temporal de pectinas e AGP que podem ser utilizados como marcadores de desenvolvimento gametofítico masculino. As observações feitas nesse trabalho fornecem dados sobre aspectos reprodutivos das espécies que podem ser utilizados em programas de melhoramento genético, conservação e desenvolvimento de haploides
Resumo:
Deformable Template models are first applied to track the inner wall of coronary arteries in intravascular ultrasound sequences, mainly in the assistance to angioplasty surgery. A circular template is used for initializing an elliptical deformable model to track wall deformation when inflating a balloon placed at the tip of the catheter. We define a new energy function for driving the behavior of the template and we test its robustness both in real and synthetic images. Finally we introduce a framework for learning and recognizing spatio-temporal geometric constraints based on Principal Component Analysis (eigenconstraints).
Resumo:
In endotherms insects, the thermoregulatory mechanisms modulate heat transfer from the thorax to the abdomen to avoid overheating or cooling in order to obtain a prolonged flight performance. Scarabaeus sacer and S. cicatricosus, two sympatric species with the same habitat and food preferences, showed daily temporal segregation with S. cicatricosus being more active during warmer hours of the day in opposition to S. sacer who avoid it. In the case of S. sacer, their endothermy pattern suggested an adaptive capacity for thorax heat retention. In S. cicatricosus, an active ‘heat exchanger’ mechanism was suggested. However, no empirical evidence had been documented until now. Thermographic sequences recorded during flight performance showed evidence of the existence of both thermoregulatory mechanisms. In S. sacer, infrared sequences showed a possible heat insulator (passive thermal window), which prevents heat transfer from meso- and metathorax to the abdomen during flight. In S. cicatricosus, infrared sequences revealed clear and effective heat flow between the thorax and abdomen (abdominal heat transfer) that should be considered the main mechanism of thermoregulation. This was related to a subsequent increase in abdominal pumping (as a cooling mechanism) during flight. Computer microtomography scanning, anatomical dissections and internal air volume measurements showed two possible heat retention mechanisms for S. sacer; the abdominal air sacs and the development of the internal abdominal sternites that could explain the thermoregulation between thorax and abdomen. Our results suggest that interspecific interactions between sympatric species are regulated by very different mechanisms. These mechanisms create unique thermal niches for the different species, thereby preventing competition and modulating spatio-temporal distribution and the composition of dung beetle assemblages.
Resumo:
Las funciones de segundo orden son cada vez más empleadas en el análisis de procesos ecológicos. En este trabajo presentamos dos funciones de 2º orden desarrolladas recientemente que permiten analizar la interacción espacio-temporal entre dos especies o tipos funcionales de individuos. Estas funciones han sido desarrolladas para el estudio de interacciones entre especies en masas forestales a partir de la actual distribución diamétrica de los árboles. La primera de ellas es la función bivariante para procesos de puntos con marca Krsmm, que permite analizar la correlación espacial de una variable entre los individuos pertenecientes a dos especies en función de la distancia. La segunda es la función de reemplazo , que permite analizar la asociación entre los individuos pertenecientes a dos especies en función de la diferencia entre sus diámetros u otra variable asociada a dichos individuos. Para mostrar el comportamiento de ambas funciones en el análisis de sistemas forestales en los que operan diferentes procesos ecológicos se presentan tres casos de estudio: una masa mixta de Pinus pinea L. y Pinus pinaster Ait. en la Meseta Norte, un bosque de niebla de la Región Tropical Andina y el ecotono entre las masas de Quercus pyrenaica Willd. y Pinus sylvestris L. en el Sistema Central, en los que tanto la función Krsmm como la función r se utilizan para analizar la dinámica forestal a partir de parcelas experimentales con todos los árboles localizados y de parcelas de inventario.
Resumo:
A twenty-year period of severe land subsidence evolution in the Alto Guadalentín Basin (southeast Spain) is monitored using multi-sensor SAR images, processed by advanced differential interferometric synthetic aperture radar (DInSAR) techniques. The SAR images used in this study consist of four datasets acquired by ERS-1/2, ENVISAT, ALOS and COSMO-SkyMed satellites between 1992 and 2012. The integration of ground surface displacement maps retrieved for different time periods allows us to quantify up to 2.50 m of cumulated displacements that occurred between 1992 and 2012 in the Alto Guadalentín Basin. DInSAR results were locally compared with global positioning system (GPS) data available for two continuous stations located in the study area, demonstrating the high consistency of local vertical motion measurements between the two different surveying techniques. An average absolute error of 4.6 ± 4 mm for the ALOS data and of 4.8 ± 3.5 mm for the COSMO-SkyMed data confirmed the reliability of the analysis. The spatial analysis of DInSAR ground surface displacement reveals a direct correlation with the thickness of the compressible alluvial deposits. Detected ground subsidence in the past 20 years is most likely a consequence of a 100–200 m groundwater level drop that has persisted since the 1970s due to the overexploitation of the Alto Guadalentín aquifer system. The negative gradient of the pore pressure is responsible for the extremely slow consolidation of a very thick (> 100 m) layer of fine-grained silt and clay layers with low vertical hydraulic permeability (approximately 50 mm/h) wherein the maximum settlement has still not been reached.
Resumo:
Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain) has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982–1984, 1992–1995 and 2004–2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.
Resumo:
Beijing is one of the most water-stressed cities in the world. Due to over-exploitation of groundwater, the Beijing region has been suffering from land subsidence since 1935. In this study, the Small Baseline InSAR technique has been employed to process Envisat ASAR images acquired between 2003 and 2010 and TerraSAR-X stripmap images collected from 2010 to 2011 to investigate land subsidence in the Beijing region. The maximum subsidence is seen in the eastern part of Beijing with a rate greater than 100 mm/year. Comparisons between InSAR and GPS derived subsidence rates show an RMS difference of 2.94 mm/year with a mean of 2.41 ± 1.84 mm/year. In addition, a high correlation was observed between InSAR subsidence rate maps derived from two different datasets (i.e., Envisat and TerraSAR-X). These demonstrate once again that InSAR is a powerful tool for monitoring land subsidence. InSAR derived subsidence rate maps have allowed for a comprehensive spatio-temporal analysis to identify the main triggering factors of land subsidence. Some interesting relationships in terms of land subsidence were found with groundwater level, active faults, accumulated soft soil thickness and different aquifer types. Furthermore, a relationship with the distances to pumping wells was also recognized in this work.
Resumo:
Fish traps are widely used in Norwegian fjords, especially those designed for monitoring salmonid populations in the marine environment, although many other marine fish species are also captured. The composition and spatio-temporal variations of fish species captured by fish traps were monitored in five different coastal locations throughout the Romsdalsfjord region, Western Norway, from May to August during the three consecutive years (2011–2013). Twenty-three fish species were captured by traps in coastal waters, both resident and migratory fishes. The most common fish and with greater catchability were saithe (Pollachis virens) and sea trout (Salmo trutta), followed by cod (Gadus morhua), pollack (P. pollachius), herring (Clupea harengus) and mackerels (Trachurus trachurus and Scomber scombrus). However, the captured assemblage presented great spatial and seasonal variations, in terms of mean daily catch, probably associated with hydrographical conditions and migrational patterns. Information obtained in this study will help us to better understand the compositions and dynamic of coastal fish populations inhabiting Norwegian coastal waters. In addition, traps are highly recommended as a management tool for fish research (e.g. fish-tagging experiments, mark and recapture) and conservation purposes (coastal use and fisheries studies).
Resumo:
1Recent studies demonstrated the sensitivity of northern forest ecosystems to changes in the amount and duration of snow cover at annual to decadal time scales. However, the consequences of snowfall variability remain uncertain for ecological variables operating at longer time scales, especially the distributions of forest communities. 2The Great Lakes region of North America offers a unique setting to examine the long-term effects of variable snowfall on forest communities. Lake-effect snow produces a three-fold gradient in annual snowfall over tens of kilometres, and dramatic edaphic variations occur among landform types resulting from Quaternary glaciations. We tested the hypothesis that these factors interact to control the distributions of mesic (dominated by Acer saccharum, Tsuga canadensis and Fagus grandifolia) and xeric forests (dominated by Pinus and Quercus spp.) in northern Lower Michigan. 3We compiled pre-European-settlement vegetation data and overlaid these data with records of climate, water balance and soil, onto Landtype Association polygons in a geographical information system. We then used multivariate adaptive regression splines to model the abundance of mesic vegetation in relation to environmental controls. 4Snowfall is the most predictive among five variables retained by our model, and it affects model performance 29% more than soil texture, the second most important variable. The abundance of mesic trees is high on fine-textured soils regardless of snowfall, but it increases with snowfall on coarse-textured substrates. Lake-effect snowfall also determines the species composition within mesic forests. The weighted importance of A. saccharum is significantly greater than of T. canadensis or F. grandifolia within the lake-effect snowbelt, whereas T. canadensis is more plentiful outside the snowbelt. These patterns are probably driven by the influence of snowfall on soil moisture, nutrient availability and fire return intervals. 5Our results imply that a key factor dictating the spatio-temporal patterns of forest communities in the vast region around the Great Lakes is how the lake-effect snowfall regime responds to global change. Snowfall reductions will probably cause a major decrease in the abundance of ecologically and economically important species, such as A. saccharum.
Resumo:
Spatio-temporal maps of the occipital cortex of macaque monkeys were analyzed using optical imaging of intrinsic signals. The images obtained during localized visual stimulation (IS) were compared with the images obtained on presentation of a blank screen (IB). We first investigated spontaneous variations of the intrinsic signals by analyzing the 100 IBs for each of the three cortical areas. Slow periodical activation was observed in alternation over the cortical areas. Cross-correlation analysis indicated that synchronization of spontaneous activation only took place within each cortical area, but not between them. When a small, drifting grating (2degreesX2degrees) was presented on the fovea. a dark spot appeared in the optical image at the cortical representation of this retinal location. It spread bilaterally along the border between V1 and V2, continuing as a number of parallel dark bands covering a large area of the lateral surface of V1. Cross-correlation analysis showed that during visual stimulation the intrinsic signals over all of the three cortical areas were synchronized, with in-phase activation of V1 and V2 and anti-phase activation of V4 and V1/V2. The significance of these extensive synergistic and antagonistic interactions between different cortical areas is discussed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Motion-induced blindness (MIB) is a phenomenon, perhaps related to perceptual rivalry, where stationary targets disappear and reappear in a cyclic mode when viewed against a background (mask) of coherent, apparent 3-D motion. Since MIB has recently been shown to share similar temporal properties with binocular rivalry, we probed the appearance-disappearance cycle of MIB using unilateral, single-pulse transcranial magnetic stimulation (TMS)-a manipulation that has previously been shown to influence binocular rivalry. Effects were seen for both hemispheres when the timing of TMS was determined prospectively on the basis of a given subject's appearance-disappearance cycle, so that it occurred on average around 300 ms before the time of perceptual switch. Magnetic stimulation of either hemisphere shortened the time to switch from appearance to disappearance and vice versa. However, TMS of left posterior parietal cortex more selectively shortened the disappearance time of the targets if delivered in phase with the disappearance cycle, but lengthened it if TMS was delivered in the appearance phase after the perceptual switch. Opposite effects were seen in the right hemisphere, although less marked than the left-hemisphere effects. As well as sharing temporal characteristics with binocular rivalry, MIB therefore seems to share a similar underlying mechanism of interhemispheric modulation. Interhemispheric switching may thus provide a common temporal framework for uniting the diverse, multilevel phenomena of perceptual rivalry.
Resumo:
Basic structure studies of the biosynthetic machinery of the cell by electron microscopy (EM) have underpinned much of our fundamental knowledge in the areas of molecular cell biology and membrane traffic. Driven by our collective desire to understand how changes in the complex and dynamic structure of this enigmatic organelle relate to its pivotal roles in the cell, the comparatively high-resolution glimpses of the Golgi and other compartments of the secretory pathway offered to us through EM have helped to inspire the development and application of some of our most informative, complimentary (molecular, biochemical and genetic) approaches. Even so, no one has yet even come close to relating the basic molecular mechanisms of transport, through and from the Golgi, to its ultrastructure, to everybody's satisfaction. Over the past decade, EM tomography has afforded new insights into structure -function relationships of the Golgi and provoked a re-evaluation of older paradigms. By providing a set of tools for structurally dissecting cells at high-resolution in three-dimensions (3D), EM tomography has emerged as a method for studying molecular cell biology in situ. As we move rapidly toward the establishment of molecular atlases of organelles through advances in proteomics and genomics, tomographic studies of the Golgi offer the tantalizing possibility that one day, we will be able to map the spatio-temporal coordinates of Golgi-related proteins and lipids accurately in the context of 4D cellular space. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Pre-settlement events play an important role in determining larval success in marine invertebrates with bentho-pelagic life histories, yet the consequences of these events typically are not well understood. The purpose of this study was to examine the pre-settlement impacts of different seawater temperatures on the size and population density of dinoflagellate symbionts in brooded larvae of the Caribbean coral Porites astreoides. Larvae were collected from P. astreoides at 14-20 m depth on Conch Reef (Florida) in June 2002, and incubated for 24 h at 15 temperatures spanning the range 25.1 degrees-30.0 degrees C in mean increments of 0.4 +/- 0.1 degrees C (+/- SD). The most striking feature of the larval responses was the magnitude of change in both parameters across this 5 degrees C temperature range within 24 h. In general, larvae were largest and had the highest population densities of Symbiodinium sp. between 26.4 degrees-27.7 degrees C, and were smallest and had the lowest population densities at 25.8 degrees C and 28.8 degrees C. Larval size and symbiont population density were elevated slightly (relative to the minimal values) at the temperature extremes of 25.1 degrees C and 30 degrees C. These data demonstrate that coral larvae are highly sensitive to seawater temperature during their pelagic phase, and respond through changes in size and the population densities of Symbiodinium sp. to ecologically relevant temperature signals within 24 h. The extent to which these changes are biologically meaningful will depend on the duration and frequency of exposure of coral larvae to spatio-temporal variability in seawater temperature, and whether the responses have cascading effects on larval success and their entry to the post-settlement and recruitment phase.