979 resultados para sparse matrix-vector multiplication
Resumo:
Abstract
Resumo:
In this paper, mixed spectral-structural kernel machines are proposed for the classification of very-high resolution images. The simultaneous use of multispectral and structural features (computed using morphological filters) allows a significant increase in classification accuracy of remote sensing images. Subsequently, weighted summation kernel support vector machines are proposed and applied in order to take into account the multiscale nature of the scene considered. Such classifiers use the Mercer property of kernel matrices to compute a new kernel matrix accounting simultaneously for two scale parameters. Tests on a Zurich QuickBird image show the relevance of the proposed method : using the mixed spectral-structural features, the classification accuracy increases of about 5%, achieving a Kappa index of 0.97. The multikernel approach proposed provide an overall accuracy of 98.90% with related Kappa index of 0.985.
Resumo:
Matrix attachment regions (MAR) generally act as epigenetic regulatory sequences that increase gene expression, and they were proposed to partition chromosomes into loop-forming domains. However, their molecular mode of action remains poorly understood. Here, we assessed the possible contribution of the AT-rich core and adjacent transcription factor binding motifs to the transcription augmenting and anti-silencing effects of human MAR 1-68. Either flanking sequences together with the AT-rich core were required to obtain the full MAR effects. Shortened MAR derivatives retaining full MAR activity were constructed from combinations of the AT-rich sequence and multimerized transcription factor binding motifs, implying that both transcription factors and the AT-rich microsatellite sequence are required to mediate the MAR effect. Genomic analysis indicated that MAR AT-rich cores may be depleted of histones and enriched in RNA polymerase II, providing a molecular interpretation of their chromatin domain insulator and transcriptional augmentation activities.
Resumo:
This paper presents a model of the Stokes emission vector from the ocean surface. The ocean surface is described as an ensemble of facets with Cox and Munk's (1954) Gram-Charlier slope distribution. The study discusses the impact of different up-wind and cross-wind rms slopes, skewness, peakedness, foam cover models and atmospheric effects on the azimuthal variation of the Stokes vector, as well as the limitations of the model. Simulation results compare favorably, both in mean value and azimuthal dependence, with SSM/I data at 53° incidence angle and with JPL's WINDRAD measurements at incidence angles from 30° to 65°, and at wind speeds from 2.5 to 11 m/s.
Resumo:
This work provides a general framework for the design of second-order blind estimators without adopting anyapproximation about the observation statistics or the a prioridistribution of the parameters. The proposed solution is obtainedminimizing the estimator variance subject to some constraints onthe estimator bias. The resulting optimal estimator is found todepend on the observation fourth-order moments that can be calculatedanalytically from the known signal model. Unfortunately,in most cases, the performance of this estimator is severely limitedby the residual bias inherent to nonlinear estimation problems.To overcome this limitation, the second-order minimum varianceunbiased estimator is deduced from the general solution by assumingaccurate prior information on the vector of parameters.This small-error approximation is adopted to design iterativeestimators or trackers. It is shown that the associated varianceconstitutes the lower bound for the variance of any unbiasedestimator based on the sample covariance matrix.The paper formulation is then applied to track the angle-of-arrival(AoA) of multiple digitally-modulated sources by means ofa uniform linear array. The optimal second-order tracker is comparedwith the classical maximum likelihood (ML) blind methodsthat are shown to be quadratic in the observed data as well. Simulationshave confirmed that the discrete nature of the transmittedsymbols can be exploited to improve considerably the discriminationof near sources in medium-to-high SNR scenarios.
Resumo:
In numerical linear algebra, students encounter earlythe iterative power method, which finds eigenvectors of a matrixfrom an arbitrary starting point through repeated normalizationand multiplications by the matrix itself. In practice, more sophisticatedmethods are used nowadays, threatening to make the powermethod a historical and pedagogic footnote. However, in the contextof communication over a time-division duplex (TDD) multipleinputmultiple-output (MIMO) channel, the power method takes aspecial position. It can be viewed as an intrinsic part of the uplinkand downlink communication switching, enabling estimationof the eigenmodes of the channel without extra overhead. Generalizingthe method to vector subspaces, communication in thesubspaces with the best receive and transmit signal-to-noise ratio(SNR) is made possible. In exploring this intrinsic subspace convergence(ISC), we show that several published and new schemes canbe cast into a common framework where all members benefit fromthe ISC.
Resumo:
The decision-making process regarding drug dose, regularly used in everyday medical practice, is critical to patients' health and recovery. It is a challenging process, especially for a drug with narrow therapeutic ranges, in which a medical doctor decides the quantity (dose amount) and frequency (dose interval) on the basis of a set of available patient features and doctor's clinical experience (a priori adaptation). Computer support in drug dose administration makes the prescription procedure faster, more accurate, objective, and less expensive, with a tendency to reduce the number of invasive procedures. This paper presents an advanced integrated Drug Administration Decision Support System (DADSS) to help clinicians/patients with the dose computing. Based on a support vector machine (SVM) algorithm, enhanced with the random sample consensus technique, this system is able to predict the drug concentration values and computes the ideal dose amount and dose interval for a new patient. With an extension to combine the SVM method and the explicit analytical model, the advanced integrated DADSS system is able to compute drug concentration-to-time curves for a patient under different conditions. A feedback loop is enabled to update the curve with a new measured concentration value to make it more personalized (a posteriori adaptation).
Resumo:
Dermatophytes are human and animal pathogenic fungi which cause cutaneous infections and grow exclusively in the stratum corneum, nails and hair. In a culture medium containing soy proteins as sole nitrogen source a substantial proteolytic activity was secreted by Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis. This proteolytic activity was 55-75 % inhibited by o-phenanthroline, attesting that metalloproteases were secreted by all three species. Using a consensus probe constructed on previously characterized genes encoding metalloproteases (MEP) of the M36 fungalysin family in Aspergillus fumigatus, Aspergillus oryzae and M. canis, a five-member MEP family was isolated from genomic libraries of T. rubrum, T. mentagrophytes and M. canis. A phylogenetic analysis of genomic and protein sequences revealed a robust tree consisting of five main clades, each of them including a MEP sequence type from each dermatophyte species. Each MEP type was remarkably conserved across species (72-97 % amino acid sequence identity). The tree topology clearly indicated that the multiplication of MEP genes in dermatophytes occurred prior to species divergence. In culture medium containing soy proteins as a sole nitrogen source secreted Meps accounted for 19-36 % of total secreted protein extracts; characterization of protein bands by proteolysis and mass spectrometry revealed that the three dermatophyte species secreted two Meps (Mep3 and Mep4) encoded by orthologous genes.
Resumo:
The main objective of this study was todo a statistical analysis of ecological type from optical satellite data, using Tipping's sparse Bayesian algorithm. This thesis uses "the Relevence Vector Machine" algorithm in ecological classification betweenforestland and wetland. Further this bi-classification technique was used to do classification of many other different species of trees and produces hierarchical classification of entire subclasses given as a target class. Also, we carried out an attempt to use airborne image of same forest area. Combining it with image analysis, using different image processing operation, we tried to extract good features and later used them to perform classification of forestland and wetland.
Resumo:
We study the impact of sampling theorems on the fidelity of sparse image reconstruction on the sphere. We discuss how a reduction in the number of samples required to represent all information content of a band-limited signal acts to improve the fidelity of sparse image reconstruction, through both the dimensionality and sparsity of signals. To demonstrate this result, we consider a simple inpainting problem on the sphere and consider images sparse in the magnitude of their gradient. We develop a framework for total variation inpainting on the sphere, including fast methods to render the inpainting problem computationally feasible at high resolution. Recently a new sampling theorem on the sphere was developed, reducing the required number of samples by a factor of two for equiangular sampling schemes. Through numerical simulations, we verify the enhanced fidelity of sparse image reconstruction due to the more efficient sampling of the sphere provided by the new sampling theorem.
Resumo:
Yeasts are responsible for several traits in fermented beverages, including wine and beer, and their genetic manipulation is often necessary to improve the quality of the fermentation product. Improvement of wild-type strains of Saccharomyces cerevisiae and Saccharomyces pastorianus is difficult due to their homothallic character and variable ploidy level. Homothallism is determined by the HO gene in S. cerevisiae and the Sc-HO gene in S. pastorianus. In this work, we describe the construction of an HO disruption vector (pDHO) containing an HO disruption cassette and discuss its use in generating heterothallic yeast strains from homothallic Saccharomyces species.
Resumo:
This paper presents a novel image classification scheme for benthic coral reef images that can be applied to both single image and composite mosaic datasets. The proposed method can be configured to the characteristics (e.g., the size of the dataset, number of classes, resolution of the samples, color information availability, class types, etc.) of individual datasets. The proposed method uses completed local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, and opponent angle and hue channel color histograms as feature descriptors. For classification, either k-nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or probability density weighted mean distance (PDWMD) is used. The combination of features and classifiers that attains the best results is presented together with the guidelines for selection. The accuracy and efficiency of our proposed method are compared with other state-of-the-art techniques using three benthic and three texture datasets. The proposed method achieves the highest overall classification accuracy of any of the tested methods and has moderate execution time. Finally, the proposed classification scheme is applied to a large-scale image mosaic of the Red Sea to create a completely classified thematic map of the reef benthos
Resumo:
Gene transfer in eukaryotic cells and organisms suffers from epigenetic effects that result in low or unstable transgene expression and high clonal variability. Use of epigenetic regulators such as matrix attachment regions (MARs) is a promising approach to alleviate such unwanted effects. Dissection of a known MAR allowed the identification of sequence motifs that mediate elevated transgene expression. Bioinformatics analysis implied that these motifs adopt a curved DNA structure that positions nucleosomes and binds specific transcription factors. From these observations, we computed putative MARs from the human genome. Cloning of several predicted MARs indicated that they are much more potent than the previously known element, boosting the expression of recombinant proteins from cultured cells as well as mediating high and sustained expression in mice. Thus we computationally identified potent epigenetic regulators, opening new strategies toward high and stable transgene expression for research, therapeutic production or gene-based therapies.