975 resultados para solubility constant K-H
Resumo:
Nanocrystalline TiO2 films have been synthesized on glass and silicon substrates by sol-gel technique. The films have been characterized with optical reflectance/transmittance in the wavelength range 300-1000nm and the optical constants (n, k) were estimated by using envelope technique as well as spectroscopic ellipsometry. Morphological studies have been carried Out using atomic force microscope (AFM). Metal-Oxide-Silicon (MOS) capacitor was fabricated using conducting coating on TiO2 film deposited on silicon. The C-V measurements show that the film annealed at 300 degrees C has a dielectric constant of 19.80. The high percentage of transmittance, low surface roughness and high dielectric constant suggests that it can be used as an efficient anti-reflection coating on silicon and other optical coating applications and also as a MOS capacitor.
Resumo:
Measurements of magnetic and dielectric properties of single crystalline ErMnO3 establish the Neel and ferroelectric transition temperatures to be 77 K and 588 K respectively. The dielectric constant of ErMnO3 shows an anomalous jump at T-N. At higher temperatures, the dielectric constant undergoes a significant decrease on application of magnetic fields. The study clearly exhibits multiferroic and magnetoelectric nature of ErMnO3.
Resumo:
We consider a modification of the three-dimensional Navier-Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as e(vertical bar k vertical bar/kd) at high wavenumbers vertical bar k vertical bar. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than e-(C(k/kd) ln(vertical bar k vertical bar/kd)) for any C < 1/(2 ln 2). The same result holds for the one-dimensional Burgers equation with exponential dissipation but can be improved: heuristic arguments and very precise simulations, analyzed by the method of asymptotic extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely of the above form with C = C-* = 1/ ln 2. The same behavior with a universal constant C-* is conjectured for the Navier-Stokes equations with exponential dissipation in any space dimension. This universality prevents the strong growth of intermittency in the far dissipation range which is obtained for ordinary Navier-Stokes turbulence. Possible applications to improved spectral simulations are briefly discussed.
Resumo:
K-Cl cotransporter 2 (KCC2) maintains a low intracellular Cl concentration required for fast hyperpolarizing responses of neurons to classical inhibitory neurotransmitters γ-aminobutyric acid (GABA) and glycine. Decreased Cl extrusion observed in genetically modified KCC2-deficient mice leads to depolarizing GABA responses, impaired brain inhibition, and as a consequence to epileptic seizures. Identification of mechanisms regulating activity of the SLC12A5 gene, which encodes the KCC2 cotransporter, in normal and pathological conditions is, thus, of extreme importance. Multiple reports have previously elucidated in details a spatio-temporal pattern of KCC2 expression. Among the characteristic features are an exclusive neuronal specificity, a dramatic upregulation during embryonic and early postnatal development, and a significant downregulation by neuronal trauma. Numerous studies confirmed these expressional features, however transcriptional mechanisms predetermining the SLC12A5 gene behaviour are still unknown. The aim of the presented thesis is to recognize such transcriptional mechanisms and, on their basis, to create a transcriptional model that would explain the established SLC12A5 gene behaviour. Up to recently, only one KCC2 transcript has been thought to exist. A particular novelty of the presented work is the identification of two SLC12A5 gene promoters (SLC12A5-1a and SLC12A5-1b) that produce at least two KCC2 isoforms (KCC2a and KCC2b) differing by their N-terminal parts. Even though a functional 86Rb+ assay reveals no significant difference between transport activities of the isoforms, consensus sites for several protein kinases, found in KCC2a but not in KCC2b, imply a distinct kinetic regulation. As a logical continuation, the current work presents a detailed analysis of the KCC2a and KCC2b expression patterns. This analysis shows an exclusively neuron-specific pattern and similar expression levels for both isoforms during embryonic and neonatal development in rodents. During subsequent postnatal development, the KCC2b expression dramatically increases, while KCC2a expression, depending on central nervous system (CNS) area, either remains at the same level or moderately decreases. In an attempt to explain both the neuronal specificity and the distinct expressional kinetics of the KCC2a and KCC2b isoforms during postnatal development, the corresponding SLC12A5-1a and SLC12A5-1b promoters have been subjected to a comprehensive bioinformatical analysis. Binding sites of several transcription factors (TFs), conserved in the mammalian SLC12A5 gene orthologs, have been identified that might shed light on the observed behaviour of the SLC12A5 gene. Possible roles of these TFs in the regulating of the SLC12A5 gene expression have been elucidated in subsequent experiments and are discussed in the current thesis.
Resumo:
Analytical solutions for forced well recharge currently in use were initially developed for pumping scenarios and applied for recharge cases assuming that radial flow in the recharge well replicates a mirror image of that in to a pumping well. Moreover these solutions were not extended to multiaquifer systems. Well bore numerical solutions were generally not considering the effect of well bore interaction, which has a significant effect in the case of a recharge well. In the present paper, improved analytical solutions are developed for a well fully penetrating either single or multiaquifers in respect.to of well storage, well loss, and interactions between the individual aquifers through well bore. The solution developed for constant and variable rates of injection and well loss is applied to the experimental data of the Hansol well injection project near the city of Ahmedabad in the Gujarat state in India. The paper also discusses the difference in well hydraulics of recharge and recovery wells.
Resumo:
We report the material and electrical properties of Erbium Oxide (Er2O3) thin films grown on n-Ge (100) by RF sputtering. The properties of the films are correlated with the processing conditions. The structural characterization reveals that the films annealed at 550 degrees C, has densified as compared to the as-grown ones. Fixed oxide charges and interface charges, both of the order of 10(13)/cm(2) is observed.
Resumo:
Contraction of an edge e merges its end points into a new single vertex, and each neighbor of one of the end points of e is a neighbor of the new vertex. An edge in a k-connected graph is contractible if its contraction does not result in a graph with lesser connectivity; otherwise the edge is called non-contractible. In this paper, we present results on the structure of contractible edges in k-trees and k-connected partial k-trees. Firstly, we show that an edge e in a k-tree is contractible if and only if e belongs to exactly one (k + 1) clique. We use this characterization to show that the graph formed by contractible edges is a 2-connected graph. We also show that there are at least |V(G)| + k - 2 contractible edges in a k-tree. Secondly, we show that if an edge e in a partial k-tree is contractible then e is contractible in any k-tree which contains the partial k-tree as an edge subgraph. We also construct a class of contraction critical 2k-connected partial 2k-trees.
Resumo:
We report the observation of persistent photoconductivity (PPC) in flower shaped PbS dendrites grown by the hydrothermal method. Potential fluctuations, due to the presence of various confinement regimes in the branches of dendrites, and surface traps, are likely responsible for the PPC observed here. We also observed photocurrent quenching and decreased dark current in the PPC below 40 K, due to the presence of a metastable state, whereas positive PPC was observed in the temperature region 40-220 K. Dark conductivity measurements, time constant parameters obtained from the stretched exponential fittings of PPC, also showed the metastable state related transition around 50 K.
Resumo:
This commentary was stimulated by Yeping Li's first editorial (2014) citing one of the journal's goals as adding multidisciplinary perspectives to current studies of single disciplines comprising the focus of other journals. In this commentary I argue for a greater focus on STEM integration, with a more equitable representation of the four disciplines in studies purporting to advance STEM learning. The STEM acronym is often used in reference to just one of the disciplines, commonly science. Although the integration of STEM disciplines is increasingly advocated in the literature, studies that address multiple disciplines appear scant with mixed findings and inadequate directions for STEM advancement. Perspectives on how discipline integration can be achieved are varied, with reference to multidisciplinary, interdisciplinary, and transdisciplinary approaches adding to the debates. Such approaches include core concepts and skills being taught separately in each discipline but housed within a common theme; the introduction of closely linked concepts and skills from two or more disciplines with the aim of deepening understanding and skills; and the adoption of a transdisciplinary approach, where knowledge and skills from two or more disciplines are applied to real-world problems and projects with the aim of shaping the total learning experience. Research that targets STEM integration is an embryonic field with respect to advancing curriculum development and various student outcomes. For example, we still need more studies on how student learning outcomes arise not only from different forms of STEM integration but also from the particular disciplines that are being integrated. As noted in this commentary, it seems that mathematics learning benefits less than the other disciplines in programs claiming to focus on STEM integration. Factors contributing to this finding warrant more scrutiny. Likewise, learning outcomes for engineering within K-12 integrated STEM programs appear under-researched. This commentary advocates a greater focus on these two disciplines within integrated STEM education research. Drawing on recommendations from the literature, suggestions are offered for addressing the challenges of integrating multiple disciplines faced by the STEM community.
Resumo:
X-ray powder diffraction along with differential thermal analysis carried out on the as-quenched samples in the 3BaO-3TiO(2)-B2O3 system confirmed their amorphous and glassy nature, respectively. The dielectric constants in the 1 kHz-1 MHz frequency range were measured as a function of temperature (323-748 K). The dielectric constant and loss were found to be frequency independent in the 323-473 K temperature range. The temperature coefficient of dielectric constant was estimated using Havinga's formula and found to be 16 ppm K-1. The electrical relaxation was rationalized using the electric modulus formalism. The dielectric constant and loss were 17 +/- 0.5 and 0.005 +/- 0.001, respectively at 323 K in the 1 kHz-1 MHz frequency range which may be of considerable interest to capacitor industry.
Resumo:
Partitional clustering algorithms, which partition the dataset into a pre-defined number of clusters, can be broadly classified into two types: algorithms which explicitly take the number of clusters as input and algorithms that take the expected size of a cluster as input. In this paper, we propose a variant of the k-means algorithm and prove that it is more efficient than standard k-means algorithms. An important contribution of this paper is the establishment of a relation between the number of clusters and the size of the clusters in a dataset through the analysis of our algorithm. We also demonstrate that the integration of this algorithm as a pre-processing step in classification algorithms reduces their running-time complexity.
Resumo:
An axis-parallel k-dimensional box is a Cartesian product R-1 x R-2 x...x R-k where R-i (for 1 <= i <= k) is a closed interval of the form [a(i), b(i)] on the real line. For a graph G, its boxicity box(G) is the minimum dimension k, such that G is representable as the intersection graph of (axis-parallel) boxes in k-dimensional space. The concept of boxicity finds applications in various areas such as ecology, operations research etc. A number of NP-hard problems are either polynomial time solvable or have much better approximation ratio on low boxicity graphs. For example, the max-clique problem is polynomial time solvable on bounded boxicity graphs and the maximum independent set problem for boxicity d graphs, given a box representation, has a left perpendicular1 + 1/c log n right perpendicular(d-1) approximation ratio for any constant c >= 1 when d >= 2. In most cases, the first step usually is computing a low dimensional box representation of the given graph. Deciding whether the boxicity of a graph is at most 2 itself is NP-hard. We give an efficient randomized algorithm to construct a box representation of any graph G on n vertices in left perpendicular(Delta + 2) ln nright perpendicular dimensions, where Delta is the maximum degree of G. This algorithm implies that box(G) <= left perpendicular(Delta + 2) ln nright perpendicular for any graph G. Our bound is tight up to a factor of ln n. We also show that our randomized algorithm can be derandomized to get a polynomial time deterministic algorithm. Though our general upper bound is in terms of maximum degree Delta, we show that for almost all graphs on n vertices, their boxicity is O(d(av) ln n) where d(av) is the average degree.
Resumo:
For the first time, we find the complex solitons for a quasi-one-dimensional Bose-Einstein condensate with two-and three-body interactions. These localized solutions are characterized by a power law behaviour. Both dark and right solitons can be excited in the experimentally allowed parameter domain, when two-and three-body interactions are,respectively, repulsive and attractive. The dark solitons travel with a constant speed, which is quite different from the Lieb mode, where profiles with different speeds, bounded above by sound velocity, can exist for specified interaction strengths. We also study the properties of these solitons in the presence of harmonic confinement with time-dependent nonlinearity and loss. The modulational instability and the Vakhitov-Kolokolov criterion of stability are also studied.
Resumo:
The solubilities of three chlorophenols, namely, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol, in supercritical carbon dioxide were determined at temperatures from (308 to 3 18) K in the pressure range of (8.8 to 15.6) MPa. The Solubilities were determined both in the absence of cosolvents and in the presence of two cosolvents, methanol and acetone. The solubilities (in the absence of cosolvents) in mole fraction of 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol at 308 K were in the range of (0.0113 to 0.0215), (0.0312 to 0.0645), and (0.008 to 0.0173), respectively. The Solubilities of the chlorophenols followed the order 2,4-dichlorophenol & 4-chlorophenol & phenol & 2,4,6-trichlorophenol & pentachlorophenol. The solubility data were correlated with the Charstil model and with the Mendez-Santiago and Teja model. The overall deviation between the experimental data and the correlated results Was less than 6 % in averaged absolute relative deviation (AARD) for both of the models.
Resumo:
Oxovanadium(IV) complexes [VO(L)(B)]Cl-2 (1-3), where L is bis(2-benzimidazolylmethyl)amine and B is 1,10-phenanthroline(phen),dipyrido[3,2-d:2',3'-f]quinoxaline(dpq) or dipyrido[3,2-a:2',3'-c]phenazine (dppz), have been prepared, characterized, and their photo-induced DNA and protein cleavage activity studied. The photocytotoxicity of complex 3 has been studied using adenocarcinoma A549 cells, The phen complex 1, structurally characterized by single-crystal X-ray crystallography, shows the presence of a vanadyl group in six-coordinate VON5 coordination geometry. The ligands L and phen display tridentate and bidentate N-donor chelating binding modes, respectively. The complexes exhibit a d-d band near 740 nm in 15% DMF-Tris-HCl buffer (pH 7.2). The phen and dpq complexes display an irreversible cathodic cyclic voltammetric response near -0.8 V in 20% DMF-Tris-HCl buffer having 0.1 M KCl as supporting electrolyte. The dppz complex 3 exhibits a quasi-reversible voltammogram near -0.6 V (vs SCE) that is assignable to the V(IV)-V(III)couple. The complexes bind to calf thymus DNA giving binding constant values in the range of 6.6 x 10(4)-2.9 x 10(5) M-1. The binding site size, thermal melting and viscosity binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor ``chemical nuclease'' activity in dark in the presence of 3-mercaptopropionic acid or hydrogen peroxide. The dpq and dppz complexes are efficient photocleavers of plasmid DNA in UV-A light of 365 nm via a mechanistic pathway that involves formation of both singlet oxygen and hydroxyl radicals. The complexes show significant photocleavage of DNA in near-IR light (>750 nm) via hydroxyl radical pathway. Among the three complexes, the dppz complex 3 shows significant BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via hydroxyl radical pathway. The dppz complex 3 also exhibits photocytotoxicity in non-small cell lung carcinoma/human lung adenocarcinoma A549 cells giving IC50 value of 17 mu M in visible light(IC50 = 175 mu M in dark).