960 resultados para soil leaching column chromatography
Resumo:
The origin of the saline lakes in the Pantanal wetland has been classically attributed to processes occurring in past periods. However, recent studies have suggested that saline water is currently forming from evaporative concentration of fresh water, which is provided annually by seasonal floods. Major elements (Ca, Mg, K) and alkalinity appear to be geochemically controlled during the concentration of waters and may be involved in the formation of carbonates and clay minerals around the saline lakes. The mineralogy of soils associated with a representative saline lake was investigated using XRD, TEM-EDS, and ICP-MS in order to identify the composition and genesis of the secondary minerals suspected to be involved in the control of major elements. The results showed that Ca, Mg, and K effectively undergo oversaturation and precipitation as the waters become more saline. These elements are incorporated in the authigenically formed carbonates, smectites, and micas surrounding the saline lake. The control of Ca occurs by precipitation of calcite and dolomite in nodules while Mg and K are mainly involved in the neoformation of Mg-smectites (stevensitic and saponitic minerals) and, probably, iron-enriched micas (ferric-illite) in surface and subsurface horizons. Therefore, our study confirms that the salinity of Pantanal, historically attributed to inheritance from former regimes, has a contribution of current processes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Joint pedological, geochemical, hydrological and geophysical investigations were performed to study the coexistence or saline and freshwater lakes in close proximity and similar climatic conditions in the Nhecolandia region, Pantanal wetlands in Brazil. The saline lakes are concentrically surrounded by green sandy loam horizons, which cause differential hydrological regimes. Mg-calcite, K-silicates, and amorphous silica precipitate in the soil cover, whereas Mg-silicates and more soluble Na-carbonates are concentrated in the topsoil along the shore of the saline lake. In saline solutions, some minor elements (As, Se) reach values above the water quality recommendations, whereas others are controlled and incorporated in solid phases (Ba, Sr). Locally, the destruction of the sandy loam horizons generates very acidic soil solution (pH similar to 3.5) through a process not yet understood. The soil distributions indicate that some freshwater lakes are former saline lakes. They are invaded by freshwater after destruction of the sandy loam green horizons, then the freshwater becomes enriched in K(+), SO(4)(2-), Fe, Al, and a stream of minor and trace elements. The formation of these green sandy loam horizons in the saline environment and their destruction in the non-saline one emphasizes the dynamic nature of this environment (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Smectite formation in alkaline-saline environments has been attributed to direct precipitation from solution and/or transformation from precursor minerals, but these mechanisms are not universally agreed upon in the literature. The objective of this work was to investigate the mineralogy of smectites in the soils surrounding a representative alkaline-saline lake of Nhecolandia, a sub-region of the Pantanal wetland, Brazil, and then to identify the mechanisms of their formation. Soils were sampled along a toposequence and analyzed by X-ray diffraction, transmission electron microscopy-energy dispersive X-ray analysis, and inductively coupled plasma-mass spectrometry. Water was collected along a transect involving the studied toposequence and equilibrium diagrams were calculated using the databases PHREEQC and AQUA. The fine-clay fraction is dominated by smectite, mica, and kaolinite. Smectites are concentrated at two places in the toposequence: an upper zone, which includes the soil horizons rarely reached by the lake-level variation; and a lower zone, which includes the surface horizon within the area of seasonal lake-level variation. Within the upper zone, the smectite is dioctahedral, rich in Al and Fe, and is classified as ferribeidellite. This phase is interstratified with mica and vermiculite and has an Fe content similar to that of the mica identified. These characteristics suggest that the ferribeidellite originates from transformation of micas and that vermiculite is an intermediate phase in this transformation. Within the lower zone, smectites are dominantly trioctahedral, Mg-rich, and are saponitic and stevensitic minerals. In addition, samples enriched in these minerals have much smaller rare-earth element (REE) contents than other soil samples. The water chemistry shows a geochemical control of Mg and saturation with respect to Mg-smectites in the more saline waters. The REE contents, water chemistry, and the presence of Mg-smectite where maximum evaporation is expected, suggest that saponitic and stevensitic minerals originate by chemical precipitation from the water column of the alkaline-saline lake.
Resumo:
PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport in variable density groundwater flow. Fluid density in PHWAT depends not on only the concentration of a single species as in SEAWAT, but also the concentrations of other dissolved chemicals that can be subject to reactive processes. Simulation results of PHWAT and PHREEQC-2 were compared in their predictions of effluent concentration from a column experiment. Both models produced identical results, showing that PHWAT has correctly coupled the sub-packages. PHWAT was then applied to the simulation of a tank experiment in which seawater intrusion was accompanied by cation exchange. The density dependence of the intrusion and the snow-plough effect in the breakthrough curves were reflected in the model simulations, which were in good agreement with the measured breakthrough data. Comparison simulations that, in turn, excluded density effects and reactions allowed us to quantify the marked effect of ignoring these processes. Next, we explored numerical issues involved in the practical application of PHWAT using the example of a dense plume flowing into a tank containing fresh water. It was shown that PHWAT could model physically unstable flow and that numerical instabilities were suppressed. Physical instability developed in the model in accordance with the increase of the modified Rayleigh number for density-dependent flow, in agreement with previous research. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The magnesium (Mg) status of 52 highly weathered, predominantly acidic, surface soils from tropical and subtropical north-eastern Australia was evaluated in a laboratory study. Soils were selected to represent a range of soil types and management histories. Exchangeable Mg concentrations were generally low (median value 0.37 cmol(+)/kg), with deficient levels (<0.3 cmol(+)/kg) being measured in 22 of the soils, highlighting the potential for Mg deficiency as a limitation to plant growth in the region. Furthermore, acid-extractable Mg concentrations, considered a reserve of potentially available Mg, were generally modest (mean and median values, 1.6 and 0.40 cmol(+)/kg, respectively). The total Mg content of the soils studied ranged from 123 to 7894 mg/kg, the majority present in the mineral pool (mean 71%), with smaller proportions in the acid-soluble (mean 11%) and exchangeable (mean 17%) pools, and a negligible amount associated with organic matter (mean 1%). A range of extractant solutions used to displace exchangeable Mg was compared, and found to yield similar results on soils with exchangeable Mg <4 cmol(+)/kg. However, at higher exchangeable Mg concentrations, dilute extractants (0.01 M CaCl2, 0.0125 M BaCl2) displaced less Mg than concentrated extractants (1 M NH4Cl, 1 M NH4OAc, 1 M KCl). The concentrated extractants displaced similar amounts of Mg, thus the choice of extractant is not critical, provided the displacing cation is sufficiently concentrated. Exchangeable Mg was not significantly correlated to organic carbon (P > 0.05), and only 45% of the variation in exchangeable Mg could be explained by a combination of pH(w) and clay content.
Resumo:
A new conceptual model for soil pore-solid structure is formalized. Soil pore-solid structure is proposed to comprise spatially abutting elements each with a value which is its membership to the fuzzy set ''pore,'' termed porosity. These values have a range between zero (all solid) and unity (all pore). Images are used to represent structures in which the elements are pixels and the value of each is a porosity. Two-dimensional random fields are generated by allocating each pixel a porosity by independently sampling a statistical distribution. These random fields are reorganized into other pore-solid structural types by selecting parent points which have a specified local region of influence. Pixels of larger or smaller porosity are aggregated about the parent points and within the region of interest by controlled swapping of pixels in the image. This creates local regions of homogeneity within the random field. This is similar to the process known as simulated annealing. The resulting structures are characterized using one-and two-dimensional variograms and functions describing their connectivity. A variety of examples of structures created by the model is presented and compared. Extension to three dimensions presents no theoretical difficulties and is currently under development.