1000 resultados para sky type
Resumo:
BACKGROUND: IL-2 receptor (IL2R) alpha is the specific component of the high affinity IL2R system involved in the immune response and in the control of autoimmunity. METHODS AND RESULTS: Here we perform a replication and fine mapping of the IL2RA gene region analyzing 3 SNPs previously associated with multiple sclerosis (MS) and 5 SNPs associated with type 1 diabetes (T1D) in a collection of 798 MS patients and 927 matched Caucasian controls from the south of Spain. We observed association with MS in 6 of 8 SNPs. The rs1570538, at the 3'- UTR extreme of the gene, previously reported to have a weak association with MS, is replicated here (P = 0.032). The most associated T1D SNP (rs41295061) was not associated with MS in the present study. However, the rs35285258, belonging to another independent group of SNPs associated with T1D, showed the maximal association in this study but different risk allele. We replicated the association of only one (rs2104286) of the two IL2RA SNPs identified in the recently performed genome-wide association study of MS. CONCLUSIONS: These findings confirm and extend the association of this gene with MS and reveal a genetic heterogeneity of the associated polymorphisms and risk alleles between MS and T1D suggesting different immunopathological roles of IL2RA in these two diseases.
Resumo:
Iclaprim is a novel diaminopyrimidine antibiotic that is active against methicillin-resistant Staphylococcus aureus (MRSA). However, it is known that the activity of diaminopyrimidines against S. aureus is antagonized by thymidine through uptake and conversion to thymidylate by thymidine kinase. Unlike with humans, for whom thymidine levels are low, thymidine levels in rodents are high, thus precluding the accurate evaluation of iclaprim efficacy in animal models. We have studied the bactericidal activity of iclaprim against an isogenic pair of MRSA isolates, the wild-type parent AW6 and its thymidine kinase-deficient mutant AH1252, in an in vitro fibrin clot model. Clots, which were aimed at mimicking vegetation structure, were made from human or rat plasma containing either the parent AW6 or the mutant AH1252, and they were exposed to homologous serum supplemented with iclaprim (3.5 microg/ml), trimethoprim-sulfamethoxazole (TMP-SMX; 8/40 microg/ml), vancomycin (40 microg/ml), or saline, each of which was added one time for 48 h. In rat clots, iclaprim and TMP-SMX were bacteriostatic against the parent, AW6. In contrast, they were bactericidal (> or = 3 log10 CFU/clot killing of the original inoculum) against the mutant AH1252. Vancomycin was the most active drug against AW6 (P < 0.05), but it showed an activity similar those of iclaprim and TMP-SMX against AH1252. In human clots, iclaprim was bactericidal against both AW6 and AH1252 strains and was as effective as TMP-SMX and vancomycin (P > 0.05). Future studies of animals using simulated human kinetics of iclaprim and thymidine kinase-deficient MRSA, which eliminate the thymidine-induced confounding effect, are warranted to support the use of iclaprim in the treatment of severe MRSA infections in humans.
Resumo:
Building on our discovery that mutations in the transmembrane serine protease, TMPRSS3, cause nonsyndromic deafness, we have investigated the contribution of other TMPRSS family members to the auditory function. To identify which of the 16 known TMPRSS genes had a strong likelihood of involvement in hearing function, three types of biological evidence were examined: 1) expression in inner ear tissues; 2) location in a genomic interval that contains a yet unidentified gene for deafness; and 3) evaluation of hearing status of any available Tmprss knockout mouse strains. This analysis demonstrated that, besides TMPRSS3, another TMPRSS gene was essential for hearing and, indeed, mice deficient for Hepsin (Hpn) also known as Tmprss1 exhibited profound hearing loss. In addition, TMPRSS2, TMPRSS5, and CORIN, also named TMPRSS10, showed strong likelihood of involvement based on their inner ear expression and mapping position within deafness loci PKSR7, DFNB24, and DFNB25, respectively. These four TMPRSS genes were then screened for mutations in affected members of the DFNB24 and DFNB25 deafness families, and in a cohort of 362 sporadic deaf cases. This large mutation screen revealed numerous novel sequence variations including three potential pathogenic mutations in the TMPRSS5 gene. The mutant forms of TMPRSS5 showed reduced or absent proteolytic activity. Subsequently, TMPRSS genes with evidence of involvement in deafness were further characterized, and their sites of expression were determined. Tmprss1, 3, and 5 proteins were detected in spiral ganglion neurons. Tmprss3 was also present in the organ of Corti. TMPRSS1 and 3 proteins appeared stably anchored to the endoplasmic reticulum membranes, whereas TMPRSS5 was also detected at the plasma membrane. Collectively, these results provide evidence that TMPRSS1 and TMPRSS3 play and TMPRSS5 may play important and specific roles in hearing.
Resumo:
Background: Obesity is a major risk factor for type 2 diabetes mellitus (T2DM). A proper anthropometric characterisation of T2DM risk is essential for disease prevention and clinical risk assessement. Methods: Longitudinal study in 37 733 participants (63% women) of the Spanish EPIC (European Prospective Investigation into Cancer and Nutrition) cohort without prevalent diabetes. Detailed questionnaire information was collected at baseline and anthropometric data gathered following standard procedures. A total of 2513 verified incident T2DM cases occurred after 12.1 years of mean follow-up. Multivariable Cox regression was used to calculate hazard ratios of T2DM by levels of anthropometric variables. Results: Overall and central obesity were independently associated with T2DM risk. BMI showed the strongest association with T2DM in men whereas waist-related indices were stronger independent predictors in women. Waist-to-height ratio revealed the largest area under the ROC curve in men and women, with optimal cut-offs at 0.60 and 0.58, respectively. The most discriminative waist circumference (WC) cut-off values were 99.4 cm in men and 90.4 cm in women. Absolute risk of T2DM was higher in men than women for any combination of age, BMI and WC categories, and remained low in normal-waist women. The population risk of T2DM attributable to obesity was 17% in men and 31% in women. Conclusions: Diabetes risk was associated with higher overall and central obesity indices even at normal BMI and WC values. The measurement of waist circumference in the clinical setting is strongly recommended for the evaluation of future T2DM risk in women.
Resumo:
BACKGROUND Observational studies implicate higher dietary energy density (DED) as a potential risk factor for weight gain and obesity. It has been hypothesized that DED may also be associated with risk of type 2 diabetes (T2D), but limited evidence exists. Therefore, we investigated the association between DED and risk of T2D in a large prospective study with heterogeneity of dietary intake. METHODOLOGY/PRINCIPAL FINDINGS A case-cohort study was nested within the European Prospective Investigation into Cancer (EPIC) study of 340,234 participants contributing 3.99 million person years of follow-up, identifying 12,403 incident diabetes cases and a random subcohort of 16,835 individuals from 8 European countries. DED was calculated as energy (kcal) from foods (except beverages) divided by the weight (gram) of foods estimated from dietary questionnaires. Prentice-weighted Cox proportional hazard regression models were fitted by country. Risk estimates were pooled by random effects meta-analysis and heterogeneity was evaluated. Estimated mean (sd) DED was 1.5 (0.3) kcal/g among cases and subcohort members, varying across countries (range 1.4-1.7 kcal/g). After adjustment for age, sex, smoking, physical activity, alcohol intake, energy intake from beverages and misreporting of dietary intake, no association was observed between DED and T2D (HR 1.02 (95% CI: 0.93-1.13), which was consistent across countries (I(2) = 2.9%). CONCLUSIONS/SIGNIFICANCE In this large European case-cohort study no association between DED of solid and semi-solid foods and risk of T2D was observed. However, despite the fact that there currently is no conclusive evidence for an association between DED and T2DM risk, choosing low energy dense foods should be promoted as they support current WHO recommendations to prevent chronic diseases.
Resumo:
Sandflies (Diptera: Psychodidae) are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2). Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells) that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania.
Resumo:
Acute infection with Trypanosoma cruzi results in intense myocarditis, which progresses to a chronic, asymptomatic indeterminate form. The evolution toward this chronic cardiac form occurs in approximately 30% of all cases of T. cruzi infection. Suppression of delayed type hypersensitivity (DTH) has been proposed as a potential explanation of the indeterminate form. We investigated the effect of cyclophosphamide (CYCL) treatment on the regulatory mechanism of DTH and the participation of heart interstitial dendritic cells (IDCs) in this process using BALB/c mice chronically infected with T. cruzi. One group was treated with CYCL (20 mg/kg body weight) for one month. A DTH skin test was performed by intradermal injection of T. cruzi antigen (3 mg/mL) in the hind-footpad and measured the skin thickness after 24 h, 48 h and 72 h. The skin test revealed increased thickness in antigen-injected footpads, which was more evident in the mice treated with CYCL than in those mice that did not receive treatment. The thickened regions were characterised by perivascular infiltrates and areas of necrosis. Intense lesions of the myocardium were present in three/16 cases and included large areas of necrosis. Morphometric evaluation of lymphocytes showed a predominance of TCD8 cells. Heart IDCs were immunolabelled with specific antibodies (CD11b and CD11c) and T. cruzi antigens were detected using a specific anti-T. cruzi antibody. Identification of T. cruzi antigens, sequestered in these cells using specific anti-T. cruzi antibodies was done, showing a significant increase in the number of these cells in treated mice. These results indicate that IDCs participate in the regulatory mechanisms of DTH response to T. cruzi infection.
Resumo:
Aquesta tesi explora la possibilitat de fer servir enllaços inductius per a una aplicació de l’automòbil on el cablejat entre la centraleta (ECU) i els sensors o detectors és difícil o impossible. S’han proposat dos mètodes: 1) el monitoratge de sensors commutats (dos possibles estats) via acoblament inductiu i 2) la transmissió mitjançant el mateix principi físic de la potència necessària per alimentar els sensors autònoms remots. La detecció d'ocupació i del cinturó de seguretat per a seients desmuntables pot ser implementada amb sistemes sense fils passius basats en circuits ressonants de tipus LC on l'estat dels sensors determina el valor del condensador i, per tant, la freqüència de ressonància. Els canvis en la freqüència són detectats per una bobina situada en el terra del vehicle. S’ha conseguit provar el sistema en un marge entre 0.5 cm i 3 cm. Els experiments s’han dut a terme fent servir un analitzador d’impedàncies connectat a una bobina primària i sensors comercials connectats a un circuit remot. La segona proposta consisteix en transmetre remotament la potència des d’una bobina situada en el terra del vehicle cap a un dispositiu autònom situat en el seient. Aquest dispositiu monitorarà l'estat dels detectors (d'ocupació i de cinturó) i transmetrà les dades mitjançant un transceptor comercial de radiofreqüència o pel mateix enllaç inductiu. S’han avaluat les bobines necessàries per a una freqüència de treball inferior a 150 kHz i s’ha estudiat quin és el regulador de tensió més apropiat per tal d’aconseguir una eficiència global màxima. Quatre tipus de reguladors de tensió s’han analitzat i comparat des del punt de vista de l’eficiència de potència. Els reguladors de tensió de tipus lineal shunt proporcionen una eficiència de potència millor que les altres alternatives, els lineals sèrie i els commutats buck o boost. Les eficiències aconseguides han estat al voltant del 40%, 25% i 10% per les bobines a distàncies 1cm, 1.5cm, i 2cm. Les proves experimentals han mostrat que els sensors autònoms han estat correctament alimentats fins a distàncies de 2.5cm.
Resumo:
Dengue virulence and fitness are important factors that determine disease outcome. However, dengue virus (DENV) molecular biology and pathogenesis are not completely elucidated. New insights on those mechanisms have been facilitated by the development of reverse genetic systems in the past decades. Unfortunately, instability of flavivirus genomes cloned in Escherichia coli has been a major problem in these systems. Here, we describe the development of a complete reverse genetics system, based on the construction of an infectious clone and replicon for a low passage DENV-3 genotype III of a clinical isolate. Both constructs were assembled into a newly designed yeast- E. coli shuttle vector by homologous recombination technique and propagated in yeast to prevent any possible genome instability in E. coli . RNA transcripts derived from the infectious clone are infectious upon transfection into BHK-21 cells even after repeated passages of the plasmid in yeast. Transcript-derived DENV-3 exhibited growth kinetics, focus formation size comparable to original DENV-3 in mosquito C6/36 cell culture. In vitro characterisation of DENV-3 replicon confirmed its identity and ability to replicate transiently in BHK-21 cells. The reverse genetics system reported here is a valuable tool that will facilitate further molecular studies in DENV replication, virus attenuation and pathogenesis.
Resumo:
African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
Resumo:
The proline-specific dipeptidyl aminopeptidase IV (DPP IV, DPP-4, CD26), widely expressed in mammalians, releases X-Pro/Ala dipeptides from the N-terminus of peptides. DPP IV is responsible of the degradation of the incretin peptide hormones regulating blood glucose levels. Several families of DPP IV inhibitors have been synthesized and evaluated. Their positive effects on the degradation of the incretins and the control of blood glucose levels have been demonstrated in biological models and in clinical trials. Presently, several DPP IV inhibitors, the "gliptins", are approved for type 2 diabetes or are under clinical evaluation. However, the gliptins may also be of therapeutic interest for other diseases beyond the inhibition of incretin degradation. In this Perspective, the biological functions and potential substrates of DPP IV enzymes are reviewed and the characteristics of the DPP IV inhibitors are discussed in view of type 2 diabetes and further therapeutic interest.
Resumo:
OBJECTIVES: Theory of mind (ToM) performance in aging and dementia of the Alzheimer type (DAT) has been a growing interest of researchers and recently, theoretical trends in ToM development have led to a focus on determining the cognitive skills involved in ToM performance. The aim of the present review is to answer three main questions: How is ToM assessed in aging and DAT? How does ToM performance evolve in aging and DAT? Do cognitive processes influence ToM performance in aging and DAT? METHOD: A systematic review was conducted to provide a targeted overview of recent studies relating ToM performance with cognitive processes in aging and DAT. RESULTS: RESULTS suggest a decrease in ToM performance, more pronounced in complex ToM tasks. Moreover, the review points up the strong involvement of executive functions, especially inhibition, and reasoning skills in ToM task achievement. CONCLUSION: Current data suggest that the structure of ToM tasks itself could lead to poor performance, especially in populations with reduced cognitive abilities.
Resumo:
Voltage-dependent calcium channel (Ca(v)) pores are modulated by cytosolic beta subunits. Four beta-subunit genes and their splice variants offer a wide structural array for tissue- or disease-specific biophysical gating phenotypes. For instance, the length of the N terminus of beta(2) subunits has major effects on activation and inactivation rates. We tested whether a similar mechanism principally operates in a beta(1) subunit. Wild-type beta(1a) subunit (N terminus length 60 aa) and its newly generated N-terminal deletion mutants (51, 27 and 18 aa) were examined within recombinant L-type calcium channel complexes (Ca(v)1.2 and alpha(2)delta2) in HEK293 cells at the whole-cell and single-channel level. Whole-cell currents were enhanced by co-transfection of the full-length beta(1a) subunit and by all truncated constructs. Voltage dependence of steady-state activation and inactivation did not depend on N terminus length, but inactivation rate was diminished by N terminus truncation. This was confirmed at the single-channel level, using ensemble average currents. Additionally, gating properties were estimated by Markov modeling. In confirmation of the descriptive analysis, inactivation rate, but none of the other transition rates, was reduced by shortening of the beta(1a) subunit N terminus. Our study shows that the length-dependent mechanism of modulating inactivation kinetics of beta(2) calcium channel subunits can be confirmed and extended to the beta(1) calcium channel subunit.
Resumo:
The pancreatic beta cell presents functional abnormalities in the early stages of development of non-insulin dependent diabetes mellitus (NIDDM). The disappearance of the first phase of insulin secretion induced by a glucose load is a early marker of NIDDM. This abnormality could be secondary to the low expression of the pancreatic glucose transporter GLUT2. Together with the glucokinase enzyme, GLUT2 is responsible for proper beta cell sensing of the extracellular glucose levels. In NIDDM, the GLUT2 mRNA levels are low, a fact which suggests a transcriptional defect of the GLUT2 gene. The first phase of glucose-induced insulin secretion by the beta pancreatic cell can be partly restored by the administration of a peptide discovered by a molecular approach, the glucagon-like peptide 1 (GLP-1). The gene encoding for the glucagon is expressed in a cell-specific manner in the A cells of the pancreatic islet and the L cells of the intestinal tract. The maturation process of the propeptide encoded by the glucagon gene is different in the two cells: the glucagon is the main hormone produced by the A cells whereas the glucagon-like peptide 1 (GLP-1) is the major peptide synthesized by the L cells of the intestine. GLP-1 is an incretin hormone and is at present the most potent insulinotropic peptide. The first results of the administration of GLP-1 to normal volunteers and diabetic patients are promising and may be a new therapeutic approach to treating diabetic patients.