1000 resultados para skin examination


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skin secretions from Australian frogs of the genus Litoria have been extensively studied for many years and are known to contain a large array of antimicrobial peptides that often bear their specific names — caerins (L. caerulea), aureins (L. aurea), citropins (L. citropa) and maculatins (L. genimaculata) — and each group displays distinct primary structural attributes. During a systematic transcriptome cloning study using a cDNA library derived from skin secretion of L. aurea, a series of identical clones were identified that encoded a novel 25-mer antimicrobial peptide that displayed 92% structural identity with caerin 1.12 from L. caerulea, differing in amino acid sequence at only two positions — Arg for Gly at position 7 and Leu amide for Ser amide at the C-terminus. The novel peptide had conserved Pro residues at positions 15 and 19 that flank a flexible hinge region which previous studies have suggested are important for effective orientation of the two alpha-helices within the bacterial membrane resulting in lysis of cells. As the two substitutions in the novel peptide serve to increase both positive charge and hydrophobicity, we synthesised a replicate and determined its minimal inhibitory concentration (MIC) against Gram positive Staphylococcus aureus and Gram negative Escherichia coli. The MICs for these organisms were 3 µM and 4 µM, respectively, indicating a high potency and haemolysis was

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The skin secretions produced by many amphibians are formidable chemical/biological weapons deployed as a defence against predators. Bioactive peptides are often the predominant class of biochemical within these secretions and the inventory of such remains incomplete with each individual taxon producing unique cocktails contained within which are some signature peptides, such as bradykinins and tachykinins. These secretions have been the source of many peptides subsequently found to have structural homologues in vertebrate neuroendocrine systems (bombesin/GRP; sauvagine/CRF; caerulein/CCK) and vice versa (bradykinin, CGRP, NMU). They are thus unequivocally intriguing resources for novel bioactive peptide discovery. Here we describe a novel 22-mer amidated peptide, named GK-22 amide (N-terminal Gly (G) and C-terminal Lys (K) amide) with an internal disulphide bridge between Cys (C) 11 and 20 from the skin secretion of Odorrana versabilis. Molecular cloning indicated that it is encoded as a single copy on a biosynthetic precursor of 59 amino acid residues consisting of a signal peptide, an acidic amino acid residue-rich spacer domain and a mature peptide encoding domain flanked N-terminally by a classical -Lys-Arg- (KR) propeptide convertase processing site and C-terminally by a Gly (G) residue amide donor. A synthetic replicate of this peptide produced potent and dose-dependent contraction of the smooth muscle of rat urinary bladder. GK-22 amide thus represents the prototype of a novel class of myotropic peptide from amphibian skin and its discovery illustrates the continuing potential of this resource to this end.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protease inhibitors are found in many venoms and evidence suggests that they occur widely in amphibian skin secretions. Kunitz inhibitors have been found in the skin secretions of bombinid toads and ranid frogs, Kazal inhibitors in phyllomedusine frogs and Bowman–Birk inhibitors in ranid frogs. Selective protease inhibitors could have important applications as therapeutics in the treatment of diseases in which discrete proteases play an aetiologcal role. Here we have examined the skin secretion of the edible frog, Rana esculenta, for protease inhibitors using trypsin as a model. HPLC fractions of secretions were screened for inhibitory activity using a chromogenic substrate as reporter. Three major peptides were resolved with trypsin inhibitory activity in HPLC fractions — one was a Kunitz-type inhibitor, a second was a Bowman–Birk inhibitor but the third represented a novel class of trypsin inhibitor in European frog skin. Analysis of the peptide established the structure of a 17-mer with an N-terminal Ala (A) residue and a C-terminal Cys (C) residue with a single disulphide bridge between Cys 12 and 17. Peptide AC-17 resembled a typical “Rana box” antimicrobial peptide but while it was active against Escherichia coli (MIC 30 µM) it was devoid of activity against Staphylococcus aureus and of haemolytic activity. In contrast, the peptide was a potent inhibitor of trypsin with a Ki of 5.56 µM. AC-17 represents the prototype of a novel trypsin inhibitor from the skin secretion of a European ranid frog that may target a trypsin-like protease present on the surface of Gram-negative bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antimicrobial peptides of amphibian skin secretions are proposed to aid survival in microbe-rich environments. While many amphibians inhabit such environments, other such as the Wuyi Mountain torrent frog, Amolops wuyiensis, live in pristine waters flowing from underground mountain springs. This species thus represents an interesting model in which to study antimicrobial peptides. “Shotgun” cloning of a skin-derived cDNA library from this species identified transcripts encoding a brevinin-1 and a ranatuerin-2. Peptides with coincident molecular masses to both predicted mature peptides were identified in HPLC fractions of skin secretion. Synthetic replicates of both peptides were generated by solid-phase peptide synthesis and tested for activity using Staphylococcus aureus, Escherichia coli and Candida albicans. The brevinin was found to be broad-spectrum and potent with minimum inhibitory concentrations (MICs) of 24 µM (Sa), 5 µM (Ec) and 20 µM (Ca). In contrast, the ranatuerin was less effective and of narrower spectrum with an MIC > 200 µM for Sa, 40 µM (Ec) and 120 µM (Ca). Thus this species of amphibian that lives in a pristine environment does indeed possess at least one potent and broad-spectrum antimicrobial peptide in its skin secretion arsenal. This phenomenon could be explained in several ways. Firstly, it may represent an ancestral peptide required when the stem species inhabited microbe-rich environments. However, there is mounting evidence for the second reason, that suggests the function of such peptides is not primarily in antimicrobial defence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian skin secretions are renowned as complex mixtures of bioactive peptides many of which are analogues of endogenous regulatory peptides. While skin secretions can be obtained non-invasively for peptidome analysis, parallel studies on the granular gland transcriptome required specimen sacrifice. The aim of the present study was to analyse archived skin secretions to determine the robustness of bioactive peptide precursor-encoding polyadenylated mRNAs in an attempt to extract maximum molecular information from rare samples. A range of solvated skin secretion samples were examined after lyophilisation for their potential to generate viable and comprehensive cDNA libraries based upon polyadenylated mRNA capture and amplification/cloning using appropriate commercial kits. Here we present unequivocal data that the granular gland transcriptome persists in a PCR amenable format even after storage for as long as 12 years in 0.1%(v/v) aqueous trifluoroacetic acid (TFA). We used a pooled skin secretion sample (2 ml) from the yellow-bellied toad, Bombina variegata (n = 14), containing the equivalent of 5 mg/ml of lyophilised skin secretion, that had been used in part for peptide isolation purposes in 1998 and had been stored at - 20 °C since that time. In the first cloning experiment, 12 different bombinin-like peptide precursor cDNAs were cloned encoding 17 different bombinins, the majority of which were novel. Subsequently, bombesin and bradykinin-related peptide precursor transcripts have been cloned successfully. These data illustrate the unexpected stability/longevity of the transcriptome in these secretions — a finding with implications for both this field of research and for the wider field of molecular biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: The aim of this study was to compare both the antimicrobial activity of terpinen-4-ol and tea tree oil (TTO) against clinical skin isolates of meticillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (CoNS) and their toxicity against human fibroblast cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we used optical coherence tomography (OCT) to extensively investigate, for the first time, the effect that microneedle (MN) geometry (MN height, and MN interspacing) and force of application have upon penetration characteristics of soluble poly(methylvinylether-co-maleic anhydride, PMVE/MA) MN arrays into neonatal porcine skin in vitro. The results from OCT investigations were then used to design optimal and suboptimal MN-based drug delivery systems and evaluate their drug delivery profiles cross full thickness and dermatomed neonatal porcine skin in vitro. It was found that increasing the force used for MN application resulted in a significant increase in the depth of penetration achieved within neonatal porcine skin. For example, MN of 600 µm height penetrated to a depth of 330 µm when inserted at a force of 4.4 N/array, while the penetration increased significantly to a depth of 520 µm, when the force of application was increased to 16.4 N/array. At an application force of 11.0 N/array it was found that, in each case, increasing MN height from 350 to 600 µm to 900 µm led to a significant increase in the depth of MN penetration achieved. Moreover, alteration of MN interspacing had no effect upon depth of penetration achieved, at a constant MN height and force of application. With respect to MN dissolution, an approximate 34% reduction in MN height occurred in the first 15 min, with only 17% of the MN height remaining after a 3-hour period. Across both skin models, there was a significantly greater cumulative amount of theophylline delivered after 24 h from an MN array of 900 µm height (292.23 ± 16.77 µg), in comparison to an MN array of 350 µm height (242.62 ± 14.81 µg) (p < 0.001). Employing full thickness skin significantly reduced drug permeation in both cases. Importantly, this study has highlighted the effect that MN geometry and application force have upon the depth of penetration into skin. While it has been shown that MN height has an important role in the extent of drug delivered across neonatal porcine skin from a soluble MN array, further studies to evaluate the full significance of MN geometry on MN mediated drug delivery are now underway. The successful use of OCT in this study could prove to be a key development for polymeric MN research, accelerating their commercial exploitation.