921 resultados para semantic segmentation
Resumo:
In this paper, we compare a well-known semantic spacemodel, Latent Semantic Analysis (LSA) with another model, Hyperspace Analogue to Language (HAL) which is widely used in different area, especially in automatic query refinement. We conduct this comparative analysis to prove our hypothesis that with respect to ability of extracting the lexical information from a corpus of text, LSA is quite similar to HAL. We regard HAL and LSA as black boxes. Through a Pearsonrsquos correlation analysis to the outputs of these two black boxes, we conclude that LSA highly co-relates with HAL and thus there is a justification that LSA and HAL can potentially play a similar role in the area of facilitating automatic query refinement. This paper evaluates LSA in a new application area and contributes an effective way to compare different semantic space models.
Resumo:
The texture segmentation techniques are diversified by the existence of several approaches. In this paper, we propose fuzzy features for the segmentation of texture image. For this purpose, a membership function is constructed to represent the effect of the neighboring pixels on the current pixel in a window. Using these membership function values, we find a feature by weighted average method for the current pixel. This is repeated for all pixels in the window treating each time one pixel as the current pixel. Using these fuzzy based features, we derive three descriptors such as maximum, entropy, and energy for each window. To segment the texture image, the modified mountain clustering that is unsupervised and fuzzy c-means clustering have been used. The performance of the proposed features is compared with that of fractal features.
Resumo:
Texture-segmentation is the crucial initial step for texture-based image retrieval. Texture is the main difficulty faced to a segmentation method. Many image segmentation algorithms either can’t handle texture properly or can’t obtain texture features directly during segmentation which can be used for retrieval purpose. This paper describes an automatic texture segmentation algorithm based on a set of features derived from wavelet domain, which are effective in texture description for retrieval purpose. Simulation results show that the proposed algorithm can efficiently capture the textured regions in arbitrary images, with the features of each region extracted as well. The features of each textured region can be directly used to index image database with applications as texture-based image retrieval.
Resumo:
Spatial data are particularly useful in mobile environments. However, due to the low bandwidth of most wireless networks, developing large spatial database applications becomes a challenging process. In this paper, we provide the first attempt to combine two important techniques, multiresolution spatial data structure and semantic caching, towards efficient spatial query processing in mobile environments. Based on the study of the characteristics of multiresolution spatial data (MSD) and multiresolution spatial query, we propose a new semantic caching model called Multiresolution Semantic Caching (MSC) for caching MSD in mobile environments. MSC enriches the traditional three-category query processing in semantic cache to five categories, thus improving the performance in three ways: 1) a reduction in the amount and complexity of the remainder queries; 2) the redundant transmission of spatial data already residing in a cache is avoided; 3) a provision for satisfactory answers before 100% query results have been transmitted to the client side. Our extensive experiments on a very large and complex real spatial database show that MSC outperforms the traditional semantic caching models significantly
Resumo:
Client-side caching of spatial data is an important yet very much under investigated issue. Effective caching of vector spatial data has the potential to greatly improve the performance of spatial applications in the Web and wireless environments. In this paper, we study the problem of semantic spatial caching, focusing on effective organization of spatial data and spatial query trimming to take advantage of cached data. Semantic caching for spatial data is a much more complex problem than semantic caching for aspatial data. Several novel ideas are proposed in this paper for spatial applications. A number of typical spatial application scenarios are used to generate spatial query sequences. An extensive experimental performance study is conducted based on these scenarios using real spatial data. We demonstrate a significant performance improvement using our ideas.
Resumo:
Deformable models are a highly accurate and flexible approach to segmenting structures in medical images. The primary drawback of deformable models is that they are sensitive to initialisation, with accurate and robust results often requiring initialisation close to the true object in the image. Automatically obtaining a good initialisation is problematic for many structures in the body. The cartilages of the knee are a thin elastic material that cover the ends of the bone, absorbing shock and allowing smooth movement. The degeneration of these cartilages characterize the progression of osteoarthritis. The state of the art in the segmentation of the cartilage are 2D semi-automated algorithms. These algorithms require significant time and supervison by a clinical expert, so the development of an automatic segmentation algorithm for the cartilages is an important clinical goal. In this paper we present an approach towards this goal that allows us to automatically providing a good initialisation for deformable models of the patella cartilage, by utilising the strong spatial relationship of the cartilage to the underlying bone.
Resumo:
Web transaction data between Web visitors and Web functionalities usually convey user task-oriented behavior pattern. Mining such type of click-stream data will lead to capture usage pattern information. Nowadays Web usage mining technique has become one of most widely used methods for Web recommendation, which customizes Web content to user-preferred style. Traditional techniques of Web usage mining, such as Web user session or Web page clustering, association rule and frequent navigational path mining can only discover usage pattern explicitly. They, however, cannot reveal the underlying navigational activities and identify the latent relationships that are associated with the patterns among Web users as well as Web pages. In this work, we propose a Web recommendation framework incorporating Web usage mining technique based on Probabilistic Latent Semantic Analysis (PLSA) model. The main advantages of this method are, not only to discover usage-based access pattern, but also to reveal the underlying latent factor as well. With the discovered user access pattern, we then present user more interested content via collaborative recommendation. To validate the effectiveness of proposed approach, we conduct experiments on real world datasets and make comparisons with some existing traditional techniques. The preliminary experimental results demonstrate the usability of the proposed approach.
Resumo:
Identifying water wastage in forms of leaks in a water distribution network of any city becomes essential as droughts are presenting serious threats to few major cities. In this paper, we propose a deployment of sensor network for monitoring water flow in any water distribution network. We cover the issues related with designing such a dedicated sensor network by considering types of sensors required, sensors' functionality, data collection, and providing computation serving as leak detection mechanism. The main focus of this paper is on appropriate network segmentation that provides the base for hierarchical approach to pipes' failure detection. We show a method for sensors allocation to the network in order to facilitate effective pipes monitoring. In general, the identified computational problem belongs to hard problems. The paper shows a heuristic method to build effective hierarchy of the network segmentation.
Resumo:
This paper presents an automated segmentation approach for MR images of the knee bones. The bones are the first stage of a segmentation system for the knee, primarily aimed at the automated segmentation of the cartilages. The segmentation is performed using 3D active shape models (ASM), which are initialized using an affine registration to an atlas. The 3D ASMs of the bones are created automatically using a point distribution model optimization scheme. The accuracy and robustness of the segmentation approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images.