938 resultados para self-assembled quantum dots
Resumo:
The spontaneous assembly of a peptide bolaamphiphile in water, namely, RFL4FR (R, arginine; F, phenylalanine; L, leucine) is investigated, along with its novel properties in surface modification and usage as substrates for cell culture. RFL4FR self-assembles into nanosheets through lateral association of the peptide backbone. The L4 sequence is located within the core of the nanosheets, whereas the R moieties are exposed to the water at the surface of the nanosheets. Kinetic assays indicate that the self-assembly is driven by a remarkable two-step process, where a nucleation phase is followed by fast growth of nanosheets with an autocatalysis process. The internal structure of the nanosheets is formed from ultrathin bolaamphiphile monolayers with a crystalline orthorhombic symmetry with cross-β organization. We show that human corneal stromal fibroblast (hCSF) cells can grow on polystyrene films coated with films dried from RFL4FR solutions. For the first time, this type of amphiphilic peptide is used as a substrate to modulate the wettability of solid surfaces for cell culture applications.
Resumo:
In this study we report detailed information on the internal structure of PNIPAM-b-PEG-b-PNIPAM nanoparticles formed from self-assembly in aqueous solutions upon increase in temperature. NMR spectroscopy, light scattering and small-angle neutron scattering (SANS) were used to monitor different stages of nanoparticle formation as a function of temperature, providing insight into the fundamental processes involved. The presence of PEG in a copolymer structure significantly affects the formation of nanoparticles, making their transition to occur over a broader temperature range. The crucial parameter that controls the transition is the ratio of PEG/PNIPAM. For pure PNIPAM, the transition is sharp; the higher the PEG/PNIPAM ratio results in a broader transition. This behavior is explained by different mechanisms of PNIPAM block incorporation during nanoparticle formation at different PEG/PNIPAM ratios. Contrast variation experiments using SANS show that the structure of nanoparticles above cloud point temperatures for PNIPAM-b-PEG-b-PNIPAM copolymers is drastically different from the structure of PNIPAM mesoglobules. In contrast with pure PNIPAM mesoglobules, where solid-like particles and chain network with a mesh size of 1-3 nm are present; nanoparticles formed from PNIPAM-b-PEG-b-PNIPAM copolymers have non-uniform structure with “frozen” areas interconnected by single chains in Gaussian conformation. SANS data with deuterated “invisible” PEG blocks imply that PEG is uniformly distributed inside of a nanoparticle. It is kinetically flexible PEG blocks which affect the nanoparticle formation by prevention of PNIPAM microphase separation.
Resumo:
High-resolution X-ray diffractometry is used to probe the nature of a diffraction-peak broadening previously noticed in quantum dots (QDs) systems with freestanding InAs islands on top of GaAs (001) substrates [Freitas et al., Phys. Status Solidi (A) 204, 2548 (2007)]. The procedure is hence extended to further investigate the capping process of InAs/GaAs QDs. A direct correlation is established between QDs growth rates and misorientation of lattice-planes at the samples surfaces. This effect provides an alternative too] for studying average strain fields on QDs systems in standard triple axis diffractometers running on X-ray tube sources, which are much more common than synchrotron facilities. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Multilayers of PbTe quantum dots embedded in SiO2 were fabricated by alternate use of Pulsed Laser Deposition (PLD) and Plasma Enhanced Chemical Vapor Deposition (PECVD) techniques. The morphological properties of the nanostructured material were studied by means of High Resolution Transmission Electron Microscopy (HRTEM), Grazing-Incidence Small-Angle X-ray scattering (GISAXS) and X-ray Reflectometry (XRR) techniques. A preliminary analysis of the GISAXS spectra provided information about the multilayer periodicity and its relationship to the size of the deposited PbTe nanoparticles. Finally multilayers were fabricated inside a Fabry-Perot cavity. The device was characterized by means of Scanning Electron Microscopy (SEM). Transmittance measurements show the device functionality in the infrared region. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Ethylene glycol dimethacrylate (EGDMA) and/or triethylene glycol dimethacrylate (TEGDMA) oligomers formation was catalyzed in aqueous medium by horseradish peroxidase (HRP) in the presence of H(2)O(2) at room temperature. EGDMA and/or TEGDMA oligomers were characterized by means of gel permeation chromatography, infrared vibrational spectroscopy and (1)H NMR spectroscopy. Self-assembling of oligomers led to right-angled crystalline particles, as evidenced by scanning electron microscopy and differential scanning calorimetry. EGDMA, TEGDMA and EGDMA-co-TEGDMA oligomers synthesized in the presence of HRP-H(2)O(2) system presented pendant vinyl groups along the chains. good solubility in chloroform, and well-defined melting point. These features evidenced few cross-linking or cyclization and revealed that the catalytic properties of HRP led to oligomeric materials with new characteristics. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Here we report the derivatization of mesoporous TiO(2) thin films for the preparation of H(2)O(2) amperometric sensors. The coordination of the bifunctional ligand 1,10 phenantroline, 5,6 dione on the surface Ti(IV) ions provides open coordination sites for Fe(II) cations which are the starting point for the growth of a layer of Prussian blue polymer. The porous structure of the mesoporous TiO(2) allows the growth, ion by ion of the coordination polymer. Up to four layer of Prussian blue can be deposit without losing the porous structure of the film, which results in an enhanced response of these materials as H(2)O(2) sensors. These porous confined PB modified electrodes are robust sensors that exhibit good reproducibility, environmental stability and high sensitivity towards H(2)O(2) detection. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical characteristics of the AA2024 aluminium alloy modified with octadecyltrimethoxysilane (ODTMS) + polyaniline (PANi) and propiltrimethoxysilane (PTMS) + (PANi) were studied in the present work. The results show that the different protective coatings shift the values of corrosion and pit potentials to more positive values making the system nobler and indicate that the double film ODTMS + PANi present the best protection against corrosion characteristics, that is probably due to the two contributions: anodic protection associated with the barrier effect.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Two-colour photocurrent detection technique for coherent control of a single InGaAs/GaAs quantum dot
Resumo:
We present a two-colour photocurrent detection method for coherent control of a single InGaAs/GaAs self-assembled quantum dot. A pulse shaping technique provides a high degree of control over picosecond optical pulses. Rabi rotations on the exciton to biexciton transition are presented, and fine structure beating is detected via time-resolved measurements. (c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Temperature dependence and uniaxial magnetocrystalline anisotropy properties of the chemically synthesized 4 nm L1(0)-Fe55Pt45 nanoparticle assembly by a modified polyol route are reported. As-prepared nanoparticles are superparamagnetic presenting fcc structure, and annealing at 550 degrees C converts the assembly into ferromagnetic nanocrystals with large coercivity (H-C>1 T) in an L1(0) phase. Magnetic measurements showed an increasing in the ferromagnetically ordered fraction of the nanoparticles with the annealing temperature increases, and the remanence ratio, S=M-R/M-S congruent to 0.76, suggests an (111) textured film. A monotonic increase of the blocking temperature T-B, the uniaxial magnetocrystalline anisotropy constant K-U, and the coercivity H-C with increasing annealing temperature was observed. Magnetic parameters indicate an enhancement in the magnetic properties due to the improved Fe55Pt45 phase stabilizing, and the room-temperature stability parameter of 67, which indicates that the magnetization should be stable for more than ten years, makes this material suitable for ultrahigh-density magnetic recording application.(c) 2007 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A simple model of electron transfer is adapted to explain fluorescence quenching in self-assembled films of poly( p-phenylene vinylene) (PPV) alternating with poly(thiophene acetic acid) (PTAA). Quenching is caused by a photo-induced electron transfer between the excited PPV (donor, D) and the PTAA (acceptor, A). The electron-transfer process can be mediated by insertion of electronically inert spacing bilayers between the D and A layers, As the number of bilayers is increased, the fluorescence is gradually recovered which is explained theoretically by assuming that the electron-transfer rate can be described as k = Z exp(- beta r) where r is the distance between D and A. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
This paper presents the fabrication and analysis of a three-dimensional FCC photonic crystal (PhC) based on a self-assembly synthesis of monodispersive latex spheres. Experimental optical characterization, achieved by measurements of the specular reflectance under variable angles, indicated the clear presence of a Bragg diffraction pattern. Results are further explored by theoretical calculations based on the Finite Difference Time Domain (FDTD) method to determine the full PhC band structure.
Resumo:
Herein we report the synthesis and properties of Fe55Pt45 nanoparticles, both monodisperse and self-assembled into hexagonal close-packed and cubic arrays of 4.0 +/- 0.2 nm size in an L1(0) structure, obtained by a modified polyol process. The new synthetic route improved the control over the particle composition, thereby reducing the temperature required to convert from face-centered cubic (fcc) to face-centered tetragonal (fct) phase by some 30-50 degrees C without additives. Annealing at 550 degrees C for 30 min converts the self-assembled nanoparticles into ferromagnetic nanocrystals with large coercivity, H-C = 11.1 kOe. Reducing the fcc-to-fct (L1(0)) ordering temperature avoided particle coalescence and decreased the loss in particle positional order without compromising the magnetic properties, as is generally observed when additives are used.