987 resultados para segmental torso masses


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within a chiral constituent quark model approach, η-meson production on the proton via electromagnetic and hadron probes is studied. With few parameters, the differential cross section and polarized beam asymmetry for γp → ηp and differential cross section for π − p → ηn processes are calculated and successfully compared with the data in the center-of-mass energy range from threshold up to 2 GeV. The five known resonances S11(1535), S11(1650), P13(1720),D13(1520), and F15(1680) are found to be dominant in the reaction mechanisms in both channels. Possible roles played by new resonances are also investigated; and in the photoproduction channel, significant contribution from S11 and D15 resonances, with masses around 1715 and 2090 MeV, respectively, are deduced. For the so-called missing resonances, no evidence is found within the investigated reactions. The helicity amplitudes and decay widths of N ∗ → πN, ηN are also presented and found to be consistent with the Particle Data Group values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Penning trap, which can measure the atomic masses with the highest precision, is one of the most important facilities in nuclear physics research nowadays. The precision mass data play an important role in the studies of nuclear models, mass formulas, nuclear synthesis processes in the nuclear astrophysics, symmetries of the weak interaction and the conserved vector current (CVC) hypothesis. The status of high precision mass measurement around the world, the basic principle of Penning trap and the basic information about the LPT (Lanzhou Penning Trap) are introduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We calculate the in-medium nucleon-nucleon scattering cross sections from the G-matrix using the Dirac-Brueckner-Hartree-Fock (DBHF) approach. And we investigate the influence of the different representations of the G-matrix to the cross sections, the difference of which is mainly from the different effective masses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deconfinement phase transition and neutrino trapping in (proto)neutron star matter are investigated in a chiral hadronic model (also referred to as the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconfined quark phase. We include a perturbative QCD correction parameter alpha(s) in the CFL quark matter equation of states. It is shown that the CFL quark core with K-0 condensation forms in neutron star matter with the large value of alpha(s). If the small value of alpha(s) is taken, hyperons suppress the CFL quark phase and the HP is dominant in the high-density region of (proto)neutron star matter. Neutrino trapping makes the fraction of the CFL quark matter decrease compared with those without neutrino trapping. Moreover, increasing the QCD correction parameter alpha(s) or decreasing the bag constant B and the strange quark mass m(s) can make the fraction of the CFL quark matter increase, simultaneously, the fraction of neutrino in protoneutron star matter increases, too. The maximum masses and the corresponding radii of (proto)neutron stars are not sensitive to the QCD correction parameter alpha(s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By including the scalar isovector meson delta, we extend the relativistic mean field model and the one-boson exchange model of changing K-meson in the framework of Schaffner's relativistic mean field model. We re-consider the coupling constants for the interactions between the meson and the baryon and the interactions of the K meson with different mesons as well in various parameter sets. Using our model, we discuss the effective masses of K mesons in the hyperon-rich nuclear matter. We find that the density modification of the K meson mass in the strange nuclear matter is smaller than that in the pure nuclear matter. The influence of the scalar isovector meson 6 on the effective mass of kaon is rather evident. But the extent of the influence is different in different parameter sets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measured fragmentation cross sections produced using the primary beam of Kr-86 at 64 MeV/nucleon on Be-9 and Ta-181 targets. The cross sections were obtained by integrating the momentum distributions of isotopes with 25 <= Z <= 36 measured using the RIPS fragment separator at RIKEN. The cross-section ratios obtained with the Ta-181 and Be-9 targets depend on the fragment masses, contrary to the simple geometrical models. We compared the extracted cross sections to EPAX; an empirical parametrization of fragmentation cross sections. Predictions from current EPAX parametrization severely overestimate the production cross sections of very neutron-rich isotopes. Attempts to obtain another set of EPAX parameters specific to the reaction studied here to extrapolate the neutron-rich nuclei more accurately have not been very successful, suggesting that accurate predictions of production cross sections of nuclei far from the valley of stability require information of nuclear properties that are not present in EPAX.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We give a general SU(2)(L) x SU(2)(R) x U(1)(EM) sigma model with external sources, dynamical breaking and spontaneous vacuum symmetry breaking, and present the general formulation of the model. It is found that sigma and pi(0) without electric charges have electromagnetic interaction effects coming front the internal structures. A general Lorentz transformation relative to external sources J(gauge) - (J(A mu) J(A mu)(kappa)) derived, using the general Lorentz transformation and the four-dimensional current of nuclear matter of the ground si ate with J(gauge) = 0, we give the four-dimensional general relations between the different currents of nuclear matter systems with J(gauge) not equal 0 and those with J(gauge) = 0. The relation of the density's coupling with external magnetic field is derived, which conforms well to dense nuclear matter in a strong magnetic field. We show different condensed effects in strong interaction about fermions and antifermions, and give the concrete scalar and pseudoscalar condensed expressions of sigma(0) and pi(0) bosons. About different dynamical breaking and spontaneous vacuum symmetry breaking, the concrete expressions of different mass spectra are obtained in field theory. This paper acquires the running spontaneous vacuum breaking value sigma'(0), and obtains the spontaneous vacuum breaking in tenus of the running sigma'(0), which make nucleon, sigma, and pi particles gain effective masses. We achieve both the effect of external sources and nonvanishing value of the condensed scalar and pseudoscalar paticles. It is deduced that the masses of nucleons, sigma and pi generally depend on different external sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antikaon condensation and kaon and antikaon production in protoneutron stars are investigated in a chiral hadronic model (also referred to as the FST model in this paper). The effects of neutrino trapping on protoneutron stars are analyzed systematically. It is shown that neutrino trapping makes the critical density of K- condensation delay to higher density and (K) over bar (0) condensation not occur. The equation of state (EOS) of (proto)neutron star matter with neutrino trapping is stiffer than that without neutrino trapping, As a result, the maximum masses of (proto)neutron stars with neutrino trapping are larger than those without neutrino trapping. If hyperons are taken into account, antikaon does not form a condensate in (Proto)neutron stars. Meanwhile, the corresponding EOS becomes much softer, and the maximum masses of (proto)neutron stars are smaller than those without hyprons. Finally, our results illustrate that the Q values for K+ and K- production in (proto)neutron stars are not sensitive to neutrino trapping and inclusion of hyperons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the isospin-dependent Brueckner framework, we investigate the contribution of three-body force ( TBF) rearrangement to isospin symmetry potential as well as its momentum and density dependence. In particular, we investigate the TBF rearrangement effects on the isospin splitting of neutron and proton effective masses in neutron-rich nuclear matter. We show that the rearrangement contribution of TBF to neutron and proton single-particle potentials is repulsive and increases rapidly with increasing density and momentum. At low densities, the influence of the TBF rearrangement on symmetry potential is rather small, and the TBF rearrangement effect becomes more and more pronounced as the density rises. At high densities, the contribution of TBF rearrangement increases considerably the symmetry potential and modifies remarkably the momentum dependence of the symmetry potential. In both cases with and without including the TBF rearrangement contribution, the predicted neutron effective mass in neutron-rich matter is greater than the proton effective mass. The TBF rearrangement effect is to decrease remarkably both the proton and neutron effective masses, and reduce the magnitude of neutron-proton effective mass splitting in neutron-rich matter at high densities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deconfinement phase transition and condensation of Goldstone bosons in neutron star matter are investigated in a chiral hadronic model (also referred as to the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconfined quark phase. It is shown that the hadronic-CFL mixed phase (MP) exists in the center of neutron stars with a small bag constant, while the CFL quark matter cannot appear in neutron stars when a large bag constant is taken. Color superconductivity softens the equation of state (EOS) and decreases the maximum mass of neutron stars compared with the unpaired quark matter. The K-0 condensation in the CFL phase has no remarkable contribution to the EOS and properties of neutron star matter. The EOS and the properties of neutron star matter are sensitive to the bag constant B, the strange quark mass m(s) and the color superconducting gap Delta. Increasing B and m(s) or decreasing Delta can stiffen the EOS which results in the larger maximum masses of neutron stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We extend the Brueckner-Hartree-Fock (BHF) approach to include the three-body force (TBF) rearrangement contribution in calculating the neutron and proton single particle (s.p.) properties in isospin asymmetric nuclear matter. We investigate the TBF rearrangement effect on the momentum-dependence of neutron and proton s.p. potentials, the isospin splitting and especially its density dependence of the neutron and proton effective masses, and the isospin symmetry potential in neutron-rich nuclear matter by adopting the realistic Argonne V-18 two-body nucleon-nucleon interaction supplemented with a microscopic TBF. We find that at low densities, the TBF rearrangement effect is fairly weak, whereas the TBF induces a significant rearrangement effect on the s.p. properties at high densities and large momenta. The TBF rearrangement contribution to s.p. potential is shown to be repulsive, and it reduces considerably the attraction of the BHF s.p. potential. The repulsion from the TBF rearrangement turns out to be strongly momentum dependent at high densities and high momenta. As a consequence, it enhances remarkably the momentum dependence of the proton and neutron s.p. potentials and reduces the neutron and proton effective masses. At low densities, the TBF rearrangement effect on symmetry potential is almost negligible, while at high densities, it enlarges sizably the symmetry potential. At high enough densities, it may even change the high-momentum behavior of symmetry potential. In both cases, with and without including the TBF rearrangement contribution, the predicted neutron effective mass is larger than the proton one in neutron-rich matter within the BHF framework; i.e., the predicted isospin splitting of the proton and neutron effective masses in neutron-rich matter is such that m(n)(*)>= m(p)(*), in agreement with the recent Dirac-BHF predictions. The TBF rearrangement contribution reduces remarkably the magnitude of the proton-neutron effective mass splitting at high densities. At high enough densities, inclusion of the TBF rearrangement contribution even suppresses almost completely the effective mass splitting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antikaon condensation and deconfinement phase transition in neutron stars are investigated in a chiral hadronic model (also referred as to the FST model) for the hadronic phase and in the MIT bag model for the deconfined quark matter phase. It is shown that the existence of quark matter phase makes antikaon condensation impossible in neutron stars. The properties of neutron stars are sensitive to the bag constant. For the small values of the bag constant, the pure quark matter core appears and hyperons are strongly suppressed in neutron stars, whereas for the large bag constant, the hadron-quark mixed phase exists in the center of neutron stars. The maximum masses of neutron stars with the quark matter phase are lower than those without the quark matter phase; meanwhile, the maximum masses of neutron stars with the quark matter phase increase with the bag constant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the effect of the calar-isovector delta-meson field on the equation of state (EOS) and composition of hyperonic neutron star matter, and the properties of hyperonic neutron stars within the frame work of the relativistic mean field theory. The influence of the delta-field turns out to be quite different and generally weaker for hyperonic neutron star matter as compared to that for npe mu neutron star matter. We find that inclusion of the delta-field enhances the strangeness content slightly and consequently moderately softens the EOS of neutron star matter in its hyperonic phase. As for the composition of hyperonic star matter, the effect of the delta-field is shown to shift the onset of the negatively-charged (positively-charged) hyperons to slightly lower (higher) densities and to enhance (reduce) their abundances. The influence of the delta-field on the maximum mass of hyperonic neutron stars is found to be fairly weak, where as inclusion of the delta-field turns out to enhance sizably both the radii and the moments of inertia of neutron stars with given masses. It is also shown that the effects of the delta-field on the properties of hyperonic neutron stars remain similar in the case of switching off the Sigma hyperons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the isospin-and momentum-dependent hadronic transport model IBUU04, we have investigated the pi(-)/pi(+) ratio in the following three reactions: Ca-48+Ca-48, Sn-124 +Sn-124 and Au-197+Au-197 with nearly the same isospin asymmetry but different masses, at the bombarding energies from 0.25 to 0.6 A GeV. It is shown that the sensitivity of probing the E-sym (rho) with pi(-)/pi(+) increases with increasing the system size or decreasing the beam energy, showing a correlation to the degree of isospin fractionation. Therefore, with a given isospin asymmetry, heavier system at energies near the pion threshold is preferential to study the behavior Of nuclear symmetry energy at supra-saturation densities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A chiral constituent quark model approach, embodying s- and u-channel exchanges, complemented with a Reggeized treatment for the t channel is presented. A model is obtained allowing data for pi(-)p ->eta n and gamma p ->eta p to be described satisfactorily. For the latter reaction, recently released data by the CLAS and CBELSA/TAPS Collaborations in the system total energy range 1.6 less than or similar to W less than or similar to 2.8 GeV are well reproduced by the inclusion of Reggeized trajectories instead of simple. and. poles. The contribution from "missing" resonances, with masses below 2 GeV, is found to be negligible in the considered processes.