807 resultados para score validity
Resumo:
The constellation of adverse cardiovascular disease (CVD) and metabolic risk factors, including elevated abdominal obesity, blood pressure (BP), glucose, and triglycerides (TG) and lowered high-density lipoprotein-cholesterol (HDL-C), has been termed the metabolic syndrome (MetSyn) [1]. A number of different definitions have been developed by the World Health Organization (WHO) [2], the National Cholesterol Education Program Adult Treatment Panel III (ATP III) [3], the European Group for the Study of Insulin Resistance (EGIR) [4] and, most recently, the International Diabetes Federation (IDF) [5]. Since there is no universal definition of the Metabolic Syndrome, several authors have derived different risk scores to represent the clustering of its components [6-11].
Resumo:
This article focuses on the evaluation of a biometric technique based on the performance of an identifying gesture by holding a telephone with an embedded accelerometer in his/her hand. The acceleration signals obtained when users perform gestures are analyzed following a mathematical method based on global sequence alignment. In this article, eight different scores are proposed and evaluated in order to quantify the differences between gestures, obtaining an optimal EER result of 3.42% when analyzing a random set of 40 users of a database made up of 80 users with real attempts of falsification. Moreover, a temporal study of the technique is presented leeding to the need to update the template to adapt the manner in which users modify how they perform their identifying gesture over time. Six updating schemes have been assessed within a database of 22 users repeating their identifying gesture in 20 sessions over 4 months, concluding that the more often the template is updated the better and more stable performance the technique presents.
Resumo:
Most empirical disciplines promote the reuse and sharing of datasets, as it leads to greater possibility of replication. While this is increasingly the case in Empirical Software Engineering, some of the most popular bug-fix datasets are now known to be biased. This raises two significants concerns: first, that sample bias may lead to underperforming prediction models, and second, that the external validity of the studies based on biased datasets may be suspect. This issue has raised considerable consternation in the ESE literature in recent years. However, there is a confounding factor of these datasets that has not been examined carefully: size. Biased datasets are sampling only some of the data that could be sampled, and doing so in a biased fashion; but biased samples could be smaller, or larger. Smaller data sets in general provide less reliable bases for estimating models, and thus could lead to inferior model performance. In this setting, we ask the question, what affects performance more? bias, or size? We conduct a detailed, large-scale meta-analysis, using simulated datasets sampled with bias from a high-quality dataset which is relatively free of bias. Our results suggest that size always matters just as much bias direction, and in fact much more than bias direction when considering information-retrieval measures such as AUC and F-score. This indicates that at least for prediction models, even when dealing with sampling bias, simply finding larger samples can sometimes be sufficient. Our analysis also exposes the complexity of the bias issue, and raises further issues to be explored in the future.
Resumo:
Enhanced learning environments are arising with great success within the field of cognitive skills training in minimally invasive surgery (MIS) because they provides multiple benefits since they avoid time, spatial and cost constraints. TELMA [1,2] is a new technology enhanced learning platform that promotes collaborative and ubiquitous training of surgeons. This platform is based on four main modules: an authoring tool, a learning content and knowledge management system, an evaluation module and a professional network. TELMA has been designed and developed focused on the user; therefore it is necessary to carry out a user validation as final stage of the development. For this purpose, e-MIS validity [3] has been defined. This validation includes usability, contents and functionality validities both for the development and production stages of any e-Learning web platform. Using e-MIS validity, the e-Learning is fully validated since it includes subjective and objective metrics. The purpose of this study is to specify and apply a set of objective and subjective metrics using e-MIS validity to test usability, contents and functionality of TELMA environment within the development stage.
Resumo:
Validity and reliability of AMPET Greek versión: a first examination of learning motivation in Greek PE settings