901 resultados para resistance to penetration
Resumo:
The recent emergence of heritable high level resistance to phosphine in stored grain pests is a serious concern among major grain growing countries around the world. Here we describe the genetics of phosphine resistance in the rust red flour beetle Tribolium castaneum (Herbst), a pest of stored grain as well as a genetic model organism. We investigated three field collected strains of T. castaneum viz., susceptible (QTC4), weakly resistant (QTC1012) and strongly resistant (QTC931) to phosphine. The dose-mortality responses of their test- and inter-cross progeny revealed that most resistance was conferred by a single major resistance gene in the weakly (3.2x) resistant strain. This gene was also found in the strongly resistant (431x) strain, together with a second major resistance gene and additional minor factors. The second major gene by itself confers only 12-206x resistance, suggesting that a strong synergistic epistatic interaction between the genes is responsible for the high level of resistance (431x) observed in the strongly resistant strain. Phosphine resistance is not sex linked and is inherited as an incompletely recessive, autosomal trait. The analysis of the phenotypic fitness response of a population derived from a single pair inter-strain cross between the susceptible and strongly resistant strains indicated the changes in the level of response in the strong resistance phenotype; however this effect was not consistent and apparently masked by the genetic background of the weakly resistant strain. The results from this work will inform phosphine resistance management strategies and provide a basis for the identification of the resistance genes.
Resumo:
Transduction of resistance to isoniazid and streptomycin as well as susceptibility to isoniazid in Mycobacterium smegmatis SN2 has been demonstrated. A method has been described for the selection of isoniazid-susceptible variants after transduction of susceptibility.
Resumo:
The aim of this investigation was to determine the persistence of biofilm-associated antibiotic resistance developed by methicillin-sensitive Staphylococcus aureus (MSSA), of different capsular types, during biofilm formation. Because of superiority of the tissue culture plate (TCP) over the Congo Red Agar (CRA) method for measuring biofilm formation, it was used to determine the persistence of the antibiotic resistance developed by the isolates in biofilms. The antibiotic resistance was found to persist for 3-4 wk post-propagation as planktonic subcultures. Interestingly, some strains even developed resistance to vancomycin and/or teicoplanin. However, no association of either biofilm formation or persistent antibiotic resistance with the major capsular phenotype was observed. These observations highlight the potential significance of (a) determining the antibiograms of S. aureus subcultured from biofilms developed in vitro using the TCP method as well as from planktonic cultures for formulation of an optimal therapeutic strategy, and (b) continuing to identify predominant non-capsular antigens contributing to biofilm formation, regardless of the capsular phenotype for the development of an effective potentially broad-spectrum vaccine for prevention of bovine mastitis caused by S. aureus.
Resumo:
Background Next-generation sequencing technology is an important tool for the rapid, genome-wide identification of genetic variations. However, it is difficult to resolve the ‘signal’ of variations of interest and the ‘noise’ of stochastic sequencing and bioinformatic errors in the large datasets that are generated. We report a simple approach to identify regional linkage to a trait that requires only two pools of DNA to be sequenced from progeny of a defined genetic cross (i.e. bulk segregant analysis) at low coverage (<10×) and without parentage assignment of individual SNPs. The analysis relies on regional averaging of pooled SNP frequencies to rapidly scan polymorphisms across the genome for differential regional homozygosity, which is then displayed graphically. Results Progeny from defined genetic crosses of Tribolium castaneum (F4 and F19) segregating for the phosphine resistance trait were exposed to phosphine to select for the resistance trait while the remainders were left unexposed. Next generation sequencing was then carried out on the genomic DNA from each pool of selected and unselected insects from each generation. The reads were mapped against the annotated T. castaneum genome from NCBI (v3.0) and analysed for SNP variations. Since it is difficult to accurately call individual SNP frequencies when the depth of sequence coverage is low, variant frequencies were averaged across larger regions. Results from regional SNP frequency averaging identified two loci, tc_rph1 on chromosome 8 and tc_rph2 on chromosome 9, which together are responsible for high level resistance. Identification of the two loci was possible with only 5-7× average coverage of the genome per dataset. These loci were subsequently confirmed by direct SNP marker analysis and fine-scale mapping. Individually, homozygosity of tc_rph1 or tc_rph2 results in only weak resistance to phosphine (estimated at up to 1.5-2.5× and 3-5× respectively), whereas in combination they interact synergistically to provide a high-level resistance >200×. The tc_rph2 resistance allele resulted in a significant fitness cost relative to the wild type allele in unselected beetles over eighteen generations. Conclusion We have validated the technique of linkage mapping by low-coverage sequencing of progeny from a simple genetic cross. The approach relied on regional averaging of SNP frequencies and was used to successfully identify candidate gene loci for phosphine resistance in T. castaneum. This is a relatively simple and rapid approach to identifying genomic regions associated with traits in defined genetic crosses that does not require any specialised statistical analysis.
Resumo:
Six tetraploid hybrids from Fundación Hondureña de Investigación Agrícola (FHIA) were evaluated in Australia over a five year period. They included three AAAA hybrids (FHIA-02, FHIA-17 and FHIA-23) and three AAAB hybrids (FHIA-01, FHIA-18 and SH-3640.10) and they were compared with industry standards, ‘Williams’ (AAA, Cavendish subgroup) and ‘Lady Finger’ (AAB, Pome subgroup). They were screened for their resistance to Fusarium wilt race 1 and subtropical race 4 caused by the pathogen Fusarium oxysporum f.sp. cubense and they were also grown for several cycles on farms not infested with Fusarium wilt to record their agronomic characteristics. The AAAB hybrids, all derived from female parent ‘Prata Anã’ (AAB, Pome subgroup) were the most resistant to both races of Fusarium wilt and were very productive in the subtropics. They were significantly more productive than ‘Lady Finger’, which was susceptible to both races of Fusarium wilt. The AAAA hybrids, with the exception of FHIA-02 which was very susceptible to Fusarium wilt and displayed the poorest agronomic traits of the six hybrids, produced bunch weights as good as Cavendish but were significantly slower to cycle. FHIA-17 and FHIA-23, both derived from the female parent ‘Highgate’ (AAA, Gros Michel subgroup), were also significantly more resistant to Fusarium wilt than ‘Gros Michel’, while FHIA-17 demonstrated a level of resistance similar to ‘Williams’ and FHIA-23 was intermediate between ‘Lady Finger’ and ‘Williams’
Resumo:
Fifty-four different sugarcane resistance gene analogue (RGA) sequences were isolated, characterized, and used to identify molecular markers linked to major disease-resistance loci in sugarcane. Ten RGAs were identified from a sugarcane stem expressed sequence tag (EST) library; the remaining 44 were isolated from sugarcane stem, leaf, and root tissue using primers designed to conserved RGA motifs. The map location of 31 of the RGAs was determined in sugarcane and compared with the location of quantitative trait loci (QTL) for brown rust resistance. After 2 years of phenotyping, 3 RGAs were shown to generate markers that were significantly associated with resistance to this disease. To assist in the understanding of the complex genetic structure of sugarcane, 17 of the 31 RGAs were also mapped in sorghum. Comparative mapping between sugarcane and sorghum revealed syntenic localization of several RGA clusters. The 3 brown rust associated RGAs were shown to map to the same linkage group (LG) in sorghum with 2 mapping to one region and the third to a region previously shown to contain a major rust-resistance QTL in sorghum. These results illustrate the value of using RGAs for the identification of markers linked to disease resistance loci and the value of simultaneous mapping in sugarcane and sorghum.
Resumo:
Objective To establish the prevalence of anthelmintic resistance in ovine gastrointestinal nematodes in southern Queensland. Design An observational parasitological study using the faecal egg count reduction test. Methods Sheep farms (n = 20) enrolled in this study met the twin criteria of using worm testing for drench decisions and having concerns about anthelmintic efficacy. On each farm, 105 sheep were randomly allocated to one of six treatment groups or an untreated control group. Faecal samples were collected on day 0 and days 10–14 for worm egg counts and larval differentiation. Single- and multi-combination anthelmintics, persistent and non-persistent, oral liquid or capsule, pour-on and injectable formulations were tested. Monepantel was not tested. Farmers also responded to a questionnaire on drenching practices. Results Haemonchus contortus was the predominant species. Efficacy <95% was recorded on 85% of farms for one or more anthelmintics and on 10% of farms for six anthelmintics. No resistance was identified on three farms. The 4-way combination product was efficacious (n = 4 farms). Napthalophos resistance was detected on one farm only. Resistance to levamisole (42% of farms), moxidectin injection (50% of farms) and the closantel/abamectin combination (67% of farms) was identified. Moxidectin oral was efficacious against Trichostrongylus colubriformis, which was predominant on only one farm. Of the farms tested, 55% ran meat breeds, 60% dosed more than the recommended dose rate and 70% always, mostly or when possible practised a ‘drench and move’ strategy. Conclusion This level of anthelmintic resistance in southern Queensland will severely compromise worm control and force increased use of monepantel.
Resumo:
Key message: QTLidentified for seedling and adult plant crown rot resistance in four partially resistant hexaploid wheat sources. PCR-based markers identified for use in marker-assisted selection. Abstract: Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in many wheat-growing regions globally. Complete resistance to infection by F. pseudograminearum has not been observed in a wheat host, but germplasm with partial resistance to this pathogen has been identified. The partially resistant wheat hexaploid germplasm sources 2-49, Sunco, IRN497 and CPI133817 were investigated in both seedling and adult plant field trials to identify markers associated with the resistance which could be used in marker-assisted selection programs. Thirteen different quantitative trait loci (QTL) conditioning crown rot resistance were identified in the four different sources. Some QTL were only observed in seedling trials whereas others appeared to be adult plant specific. For example while the QTL on chromosomes 1AS, 1BS, and 4BS contributed by 2-49 and on 2BS contributed by Sunco were detected in both seedling and field trials, the QTL on 1DL present in 2-49 and the QTL on 3BL in IRN497 were only detected in seedling trials. Genetic correlations between field trials of the same population were strong, as were correlations between seedling trials of the same population. Low to moderate correlations were observed between seedling and field trials. Flanking markers, most of which are less than 10 cM apart, have now been identified for each of the regions associated with crown rot resistance.
Resumo:
Disease screening to determine the threat Puccinia psidii poses to plantation and native eucalypts in Australia was undertaken in half-sib families of two contrasting eucalypt species, Eucalyptus cloeziana and E. argophloia. Artificial inoculation with a single-lesion isolate of P. psidii was used to screen these species for resistance to the biotype of P. psidii established in Australia. The objective was to characterize resistance to P. psidii within these two distinct species: E. argophloia, a vulnerable species with a narrow distribution, and E. cloeziana, a species with a broad and extensive distribution in Queensland. Results for E. cloeziana indicate that inland provenances are more resistant to P. psidii infection than provenances from coastal regions. Heritability estimates for the two assessment systems used (resistance on a 1-to-5 ordinal scale verses resistance on a 0-to-1 binomial scale) were low to high (0.24 to 0.63) for E. argophloia and moderate to high (0.4 to 0.91) for E. cloeziana, indicating a significant level of additive genetic variance for rust resistance within the populations. This study demonstrates the potential to select resistant families within the tested populations and indicates that P. psidii could detrimentally affect these species in native forests, nurseries, and plantations.
Resumo:
Key message: Evaluation of resistance toPyrenophora teresf.maculatain barley breeding populations via association mapping revealed a complex genetic architecture comprising a mixture of major and minor effect genes. Abstract: In the search for stable resistance to spot form of net blotch (Pyrenophora teres f. maculata, SFNB), association mapping was conducted on four independent barley (Hordeum vulgare L.) breeding populations comprising a total of 898 unique elite breeding lines from the Northern Region Barley Breeding Program in Australia for discovery of quantitative trait loci (QTL) influencing resistance at seedling and adult plant growth stages. A total of 29 significant QTL were validated across multiple breeding populations, with 22 conferring resistance at both seedling and adult plant growth stages. The remaining 7 QTL conferred resistance at either seedling (2 QTL) or adult plant (5 QTL) growth stages only. These 29 QTL represented 24 unique genomic regions, of which five were found to co-locate with previously identified QTL for SFNB. The results indicated that SFNB resistance is controlled by a large number of QTL varying in effect size with large effects QTL on chromosome 7H. A large proportion of the QTL acted in the same direction for both seedling and adult responses, suggesting that phenotypic selection for SFNB resistance performed at either growth stage could achieve adequate levels of resistance. However, the accumulation of specific resistance alleles on several chromosomes must be considered in molecular breeding selection strategies.
Resumo:
Stored product beetles that are resistant to the fumigant pesticide phosphine (hydrogen phosphide) gas have been reported for more than 40 years in many places worldwide. Traditionally, determination of phosphine resistance in stored product beetles is based on a discriminating dose bioassay that can take up to two weeks to evaluate. We developed a diagnostic cleaved amplified polymorphic sequence method, CAPS, to detect individuals with alleles for strong resistance to phosphine in populations of the red flour beetle, Tribolium castaneum, and the lesser grain borer, Rhyzopertha dominica, according to a single nucleotide mutation in the dihydrolipoamide dehydrogenase (DLD) gene. We initially isolated and sequenced the DLD genes from susceptible and strongly resistant populations of both species. The corresponding amino acid sequences were then deduced. A single amino acid mutation in DLD in populations of T.castaneum and R.dominica with strong resistance was identified as P45S in T.castaneum and P49S in R.dominica, both collected from northern Oklahoma, USA. PCR products containing these mutations were digested by the restriction enzymes MboI and BstNI, which revealed presence or absence, respectively of the resistant (R) allele and allowed inference of genotypes with that allele. Seven populations of T.castaneum from Kansas were subjected to discriminating dose bioassays for the weak and strong resistance phenotypes. Application of CAPS to these seven populations confirmed the R allele was in high frequency in the strongly resistant populations, and was absent or at a lower frequency in populations with weak resistance, which suggests that these populations with a low frequency of the R allele have the potential for selection of the strong resistance phenotype. CAPS markers for strong phosphine resistance will help to detect and confirm resistant beetles and can facilitate resistance management actions against a given pest population.
Resumo:
The prevalence of resistance to phosphine in the rust-red flour beetle, Tribolium castaneum, from eastern Australia was investigated, as well as the potential fitness cost of this type of resistance. Discriminating dose tests on 115 population samples collected from farms from 2006 to 2010 showed that populations containing insects with the weakly resistant phenotype are common in eastern Australia (65.2 of samples), although the frequency of resistant phenotypes within samples was typically low (median of 2.3). The population cage approach was used to investigate the possibility that carrying the alleles for weak resistance incurs a fitness cost. Hybridized populations were initiated using a resistant strain and either of two different susceptible strains. There was no evidence of a fitness cost based on the frequency of susceptible phenotypes in hybridized populations that were reared for seven generations without exposure to phosphine. This suggests that resistant alleles will tend to persist in field populations that have undergone selection even if selection pressure is removed. The prevalence of resistance is a warning that this species has been subject to considerable selection pressure and that effective resistance management practices are needed to address this problem. The resistance prevalence data also provide a basis against which to measure management success.
Resumo:
Rapid screening tests and an appreciation of the simple genetic control of Alternaria brown spot (ABS) susceptibility have existed for many years, and yet the application of this knowledge to commercial-scale breeding programs has been limited. Detached leaf assays were first demonstrated more than 40 years ago and reliable data suggesting a single gene determining susceptibility has been emerging for at least 20 years. However it is only recently that the requirement for genetic resistance in new hybrids has become a priority, following increased disease prevalence in Australian mandarin production areas previously considered too dry for the pathogen. Almost all of the high-fruit-quality parents developed so far by the Queensland-based breeding program are susceptible to ABS necessitating the screening of their progeny to avoid commercialisation of susceptible hybrids. This is done effectively and efficiently by spraying 3-6 month old hybrid seedlings with a spore suspension derived from a toxin-producing field isolate of Alternaria alternate, then incubating these seedlings in a cool room at 25°C and high humidity for 5 days. Susceptible seedlings show clear disease symptoms and are discarded. Analysis of observed and expected segregation ratios loosely support the hypothesis for a single dominant gene for susceptibility, but do not rule out the possibility of alternative genetic models. After implementing the routine screening for ABS resistance for three seasons we now have more than 20,000 hybrids growing in field progeny blocks that have been screened for resistance to the ABS disease.
Resumo:
High levels of resistance to phosphine in the rice weevil Sitophilus oryzae have been detected in Asian countries including China and Vietnam, however there is limited knowledge of the genetic mechanism of resistance in these strains. We find that the genetic basis of strong phosphine resistance is conserved between strains of S. oryzae from China, Vietnam and Australia. Each of four strongly resistant strains has an identical amino acid variant in the encoded dihydrolipoamide dehydrogenase (DLD) enzyme that was previously identified as a resistance factor in Rhyzopertha dominica and Tribolium castaneum. The unique amino acid substitution, Asparagine > Threonine (N505T) of all strongly resistant S. oryzae corresponds to the position of an Asparagine > Histidine variant (N506H) that was previously reported in strongly resistant R. dominica. Progeny (F16 and F18) from two independent crosses showed absolute linkage of N505T to the strong resistance phenotype, indicating that if N505T was not itself the resistance variant that it resided within 1 or 2 genes of the resistance factor. Non-complementation between the strains confirmed the shared genetic basis of strong resistance, which was supported by the very similar level of resistance between the strains, with LC50 values ranging from 0.20 to 0.36 mgL-1 for a 48 hour exposure at 25°C. Thus, the mechanism of high level resistance to phosphine is strongly conserved between R. dominica, T. castaneum and S. oryzae. A fitness cost associated with strongly resistant allele was observed in segregating populations in the absence of selection.
Resumo:
Two trials were done in this project. One was a continuation of work started under a previous GRDC/SRDC-funded activity, 'Strategies to improve the integration of legumes into cane based farming systems'. This trial aimed to assess the impact of trash and tillage management options and nematicide application on nematodes and crop performance. Methods and results are contained in the following publication: Halpin NV, Stirling GR, Rehbein WE, Quinn B, Jakins A, Ginns SP. The impact of trash and tillage management options and nematicide application on crop performance and plant-parasitic nematode populations in a sugarcane/peanut farming system. Proc. Aust. Soc. Sugar Cane Technol. 37, 192-203. Nematicide application in the plant crop significantly reduced total numbers of plant parasitic nematodes (PPN) but there was no impact on yield. Application of nematicide to the ratoon crop significantly reduced sugar yield. The study confirmed other work demonstrating that implementation of strategies like reduced tillage reduced populations of total PPN, suggesting that the soil was more suppressive to PPN in those treatments. The second trial, a variety trial, demonstrated the limited value of nematicide application in sugarcane farming systems. This study has highlighted that growers shouldn’t view nematicides as a ‘cure all’ for paddocks that have historically had high PPN numbers. Nematicides have high mammalian toxicity, have the potential to contaminate ground water (Kookana et al. 1995) and are costly. The cost of nematicide used in R1 was approx. $320 - $350/ha, adding $3.50/t of cane in a 100 t/ha crop. Also, our study demonstrated that a single nematicide treatment at the application rate registered for sugarcane is not very effective in reducing populations of nematode pests. There appears to be some levels of resistance to nematodes within the current suite of varieties available to the southern canelands. For example the soil in plots that were growing Q183 had 560% more root knot nematodes / 200mL soil compared to plots that grew Q245. The authors see great value in investment into a nematode screening program that could rate varieties into groups of susceptibility to both major sugarcane nematode pests. Such a rating could then be built into a decision support ‘tree’ or tool to better enable producers to select varieties on a paddock by paddock basis.