896 resultados para relaxation spectrum
Resumo:
Neuromyelitis optica (NMO) has been traditionally described as the association of recurrent or bilateral optic neuritis and longitudinally extensive transverse myelitis (LETM). Identification of aquaporin-4 antibody (AQP4-IgG) has deeply changed the concept of NMO. A spectrum of NMO disorders (NMOSD) has been formulated comprising conditions which include both AQP4-IgG seropositivity and one of the index events of the disease (recurrent or bilateral optic neuritis and LETM). Most NMO patients harbor asymptomatic brain MRI lesions, some of them considered as typical of NMO. Some patients with aquaporin-4 autoimmunity present brainstem, hypothalamic or encephalopathy symptoms either preceding an index event or occurring isolatedly with no evidence of optic nerve or spinal involvement. On the opposite way, other patients have optic neuritis or LETM in association with typical lesions of NMO on brain MRI and yet are AQP4-IgG seronegative. An expanded spectrum of NMO disorders is proposed to include these cases.
Resumo:
This study had the aim to investigate the auditory and communicative abilities of children diagnosed with Auditory Neuropathy Spectrum Disorder due to mutation in the Otoferlin gene. It is a descriptive and qualitative study in which two siblings with this diagnosis were assessed. The procedures conducted were: speech perception tests for children with profound hearing loss, and assessment of communication abilities using the Behavioral Observation Protocol. Because they were siblings, the subjects in the study shared family and communicative context. However, they developed different communication abilities, especially regarding the use of oral language. The study showed that the Auditory Neuropathy Spectrum Disorder is a heterogeneous condition in all its aspects, and it is not possible to make generalizations or assume that cases with similar clinical features will develop similar auditory and communicative abilities, even when they are siblings. It is concluded that the acquisition of communicative abilities involves subjective factors, which should be investigated based on the uniqueness of each case.
Resumo:
Abstract Background Eating disorder (ED) patients often have comorbidities with other psychiatric disorders, especially with mood disorders. Although recent studies suggest an intimate relationship between ED and bipolar disorder (BD), the study on a broader bipolar spectrum definition has not been done in this population. We aimed to study the occurrence of bipolar spectrum (BS) and comorbidities in eating disorder patients of a tertiary service provider. Methods Sixty-nine female patients diagnosed with anorexia nervosa, bulimia nervosa, or eating disorder not otherwise specified were evaluated. The assessment comprised the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I), clinical criteria for diagnosis of the Zurich bipolar spectrum. Mann–Whitney tests compared means of continuous variables. The association between categorical variables and the groups was described using contingency tables and analyzed using the chi-square or Fisher's exact test. The level of significance alpha was set at 5%. Results The results showed that 68.1% of patients had comorbidity with bipolar spectrum, and this was associated with higher family income, proportion of married people, and comorbidity with substance use. The ED with BS group showed higher rates of substance use comorbidity (40.4%) than the ED without BS group (13.6%). Discussion These results showed that the bipolar spectrum is a common comorbidity in patients with eating disorders and is associated with correlates of clinical importance, notably the comorbidity with substance use. Due to the pattern of similarity between the groups with and without comorbid bipolar spectrum in relation to various outcomes evaluated, the identification of comorbidity can be difficult. However, the precise diagnosis and careful identification of clinical correlates may contribute to future advances in treating these conditions. Further studies are necessary to evaluate the association of other clinical correlates and its possible causal association.
Resumo:
The complex formed by the tetracycline (TC) molecule with the Mg ion is able to prevent the replication of the genetic material in the bacterial ribosome, making an excellent antibiotic. In general, the absorption and emission spectra of TC are very sensitive to the host ions and the pH of the solvent that the set is immersed. However, the theoretical absorption spectrum available in the literature is scarce and limited to simple models that do not consider the fluctuations of the liquid. Our aim is to obtain the electronic absorption spectrum of TC and the complex Mg:TC in the ratio 1:1 and 2:1. Moreover, we analyze the changes in intensity and shifts of the bands in the systems listed. We performed the simulation using the classical Monte Carlo technique with the Lennard-Jones plus Coulomb potential applied to each atom of the both TC molecule and the Mg:TC complexes in water. The electronic absorption spectrum was obtained from the time-dependent density functional theory using different solvent models. In general, we obtained a good qualitative description of the spectra when compared with the experimental results. The Mg atom shifts the first band by 4 nm in our models, in excellent agreement to the experimental result of 4 nm. The second absorption band is found here to be useful for the characterization of the position where the ion attaches to the TC.
Resumo:
Single and double strand breaks in DNA can be caused by low-energy electrons, the most abundant secondary products of the interaction of ionizing radiation to the biological matter. Attachment of these electrons to biomolecules lead to the formation of transient negative ions (TNIs) [1], often referred to as resonances, a process that may lead to significant vibrational excitation and dissociation. In the present study, we employ the parallel version [2] of the Schwinger Multichannel Method implemented with pseudopotentials [3] to obtain the shape resonance spectrum of cytosine-guanine (CG) pairs, with special attention to π* transient anion states. Recent experimental studies pointed out a quasi-continuum vibrational excitation spectrum for electron collisions against formic acid dimers [4], suggesting that electron attachment into π* valence orbitals could induce proton transfer in these dimers. In addition, our previous studies on the shape resonance spectra of the hydrogen-bonded complexes comprising formic acid and formamide units indicated interesting electron delocalization (localization) effects arising from the presence (absence) of inversion symmetry centers in the complexes [5]. In the present work, we extend the studies on hydrogen-bonded complexes to the CG pair, where localization of ¼¤ anions would be expected, based on the previous results. References [1]. B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, L. Sanche, Science 287, 1658 (2000). [2]. J. S. dos Santos, R. F. da Costa , M. T. do N. Varella, J. Chem. Phys. 136, 084307 (2012). [3]. M. H. F. Bettega, L. G. Ferreira, M. A. P. Lima, Phys. Rev. A 47, 1111 (1993). [4]. M. Allan, Phys. Rev. Lett. 98, 123201 (2007). [5]. T. C. Freitas, S. dA. Sanchez, M. T. do N. Varella, M. H. F. Bettega, Phys. Rev. A 84, 062714 (2011).
Resumo:
Objective To compare autoantibody features in patients with primary biliary cirrhosis (PBC) and individuals presenting antimitochondria antibodies (AMAs) but no clinical or biochemical evidence of disease. Methods A total of 212 AMA-positive serum samples were classified into four groups: PBC (definite PBC, n = 93); PBC/autoimmune disease (AID; PBC plus other AID, n = 37); biochemically normal (BN) individuals (n = 61); and BN/AID (BN plus other AID, n = 21). Samples were tested by indirect immunofluorescence (IIF) on rat kidney (IIF-AMA) and ELISA [antibodies to pyruvate dehydrogenase E2-complex (PDC-E2), gp-210, Sp-100, and CENP-A/B]. AMA isotype was determined by IIF-AMA. Affinity of anti-PDC-E2 IgG was determined by 8 M urea-modified ELISA. Results High-titer IIF-AMA was more frequent in PBC and PBC/AID (57 and 70 %) than in BN and BN/AID samples (23 and 19 %) (p < 0.001). Triple isotype IIF-AMA (IgA/IgM/IgG) was more frequent in PBC and PBC/AID samples (35 and 43 %) than in BN sample (18 %; p = 0.008; p = 0.013, respectively). Anti-PDC-E2 levels were higher in PBC (mean 3.82; 95 % CI 3.36–4.29) and PBC/AID samples (3.89; 3.15–4.63) than in BN (2.43; 1.92–2.94) and BN/AID samples (2.52; 1.54–3.50) (p < 0.001). Anti-PDC-E2 avidity was higher in PBC (mean 64.5 %; 95 % CI 57.5–71.5 %) and PBC/AID samples (66.1 %; 54.4–77.8 %) than in BN samples (39.2 %; 30.9–37.5 %) (p < 0.001). PBC and PBC/AID recognized more cell domains (mitochondria, nuclear envelope, PML/sp-100 bodies, centromere) than BN (p = 0.008) and BN/AID samples (p = 0.002). Three variables were independently associated with established PBC: high-avidity anti-PDC-E2 (OR 4.121; 95 % CI 2.118–8.019); high-titer IIF-AMA (OR 4.890; 2.319–10.314); antibodies to three or more antigenic cell domains (OR 9.414; 1.924–46.060). Conclusion The autoantibody profile was quantitatively and qualitatively more robust in definite PBC as compared with AMA-positive biochemically normal individuals.
Resumo:
Impaired vascular function, manifested by an altered ability of the endothelium to release endothelium-derived relaxing factors and endothelium-derived contracting factors, is consistently reported in obesity. Considering that the endothelium plays a major role in the relaxant response to the cannabinoid agonist anandamide, the present study tested the hypothesis that vascular relaxation to anandamide is decreased in obese rats. Mechanisms contributing to decreased anandamide-induced vasodilation were determined. Resistance mesenteric arteries from young obese Zucker rats (OZRs) and their lean counterparts (LZRs) were used. Vascular reactivity was evaluated in a myograph for isometric tension recording. Protein expression and localization were analyzed by Western blotting and immunofluorescence, respectively. Vasorelaxation to anandamide, acetylcholine, and sodium nitroprusside, as well as to CB1, CB2, and TRPV1 agonists was decreased in endothelium-intact mesenteric arteries from OZRs. Incubation with an AMP-dependent protein kinase (AMPK) activator or a fatty acid amide hydrolase inhibitor restored anandamide-induced vascular relaxation in OZRs. CB1 and CB2 receptors protein expression was decreased in arteries from OZRs. Incubation of mesenteric arteries with anandamide evoked endothelial nitric oxide synthase (eNOS), AMPK and acetyl CoA carboxylase phosphorylation in LZRs, whereas it decreased phosphorylation of these proteins in OZRs. In conclusion, obesity decreases anandamide-induced relaxation in resistance arteries. Decreased cannabinoid receptors expression, increased anandamide degradation, decreased AMPK/eNOS activity as well as impairment of the response mediated by TRPV1 activation seem to contribute to reduce responses to cannabinoid agonists in obesity.
Resumo:
AIMS: We evaluated the mechanisms involved in insulin-induced vasodilatation after acute resistance exercise in healthy rats. MAIN METHODS: Wistar rats were divided into 3 groups: control (CT), electrically stimulated (ES) and resistance exercise (RE). Immediately after acute RE (15 sets with 10 repetitions at 70% of maximal intensity), the animals were sacrificed and rings of mesenteric artery were mounted in an isometric system. After this, concentration-response curves to insulin were performed in control condition and in the presence of LY294002 (PI3K inhibitor), L-NAME (NOS inhibitor), L-NAME+TEA (K(+) channels inhibitor), LY294002+BQ123 (ET-A antagonist) or ouabain (Na(+)/K(+) ATPase inhibitor). KEY FINDINGS: Acute RE increased insulin-induced vasorelaxation as compared to control (CT: Rmax=7.3 ± 0.4% and RE: Rmax=15.8 ± 0.8%; p<0.001). NOS inhibition reduced (p<0.001) this vasorelaxation from both groups (CT: Rmax=2.0 ± 0.3%, and RE: Rmax=-1.2 ± 0.1%), while PI3K inhibition abolished the vasorelaxation in CT (Rmax=-0.1±0.3%, p<0.001), and caused vasoconstriction in RE (Rmax=-6.5 ± 0.6%). That insulin-induced vasoconstriction on PI3K inhibition was abolished (p<0.001) by the ET-A antagonist (Rmax=2.9 ± 0.4%). Additionally, acute RE enhanced (p<0.001) the functional activity of the ouabain-sensitive Na(+)/K(+) ATPase activity (Rmax=10.7 ± 0.4%) and of the K(+) channels (Rmax=-6.1±0.5%; p<0.001) in the insulin-induced vasorelaxation as compared to CT. SIGNIFICANCE: Such results suggest that acute RE promotes enhanced insulin-induced vasodilatation, which could act as a fine tuning to vascular tone.
Resumo:
The motivation for the work presented in this thesis is to retrieve profile information for the atmospheric trace constituents nitrogen dioxide (NO2) and ozone (O3) in the lower troposphere from remote sensing measurements. The remote sensing technique used, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS), is a recent technique that represents a significant advance on the well-established DOAS, especially for what it concerns the study of tropospheric trace consituents. NO2 is an important trace gas in the lower troposphere due to the fact that it is involved in the production of tropospheric ozone; ozone and nitrogen dioxide are key factors in determining the quality of air with consequences, for example, on human health and the growth of vegetation. To understand the NO2 and ozone chemistry in more detail not only the concentrations at ground but also the acquisition of the vertical distribution is necessary. In fact, the budget of nitrogen oxides and ozone in the atmosphere is determined both by local emissions and non-local chemical and dynamical processes (i.e. diffusion and transport at various scales) that greatly impact on their vertical and temporal distribution: thus a tool to resolve the vertical profile information is really important. Useful measurement techniques for atmospheric trace species should fulfill at least two main requirements. First, they must be sufficiently sensitive to detect the species under consideration at their ambient concentration levels. Second, they must be specific, which means that the results of the measurement of a particular species must be neither positively nor negatively influenced by any other trace species simultaneously present in the probed volume of air. Air monitoring by spectroscopic techniques has proven to be a very useful tool to fulfill these desirable requirements as well as a number of other important properties. During the last decades, many such instruments have been developed which are based on the absorption properties of the constituents in various regions of the electromagnetic spectrum, ranging from the far infrared to the ultraviolet. Among them, Differential Optical Absorption Spectroscopy (DOAS) has played an important role. DOAS is an established remote sensing technique for atmospheric trace gases probing, which identifies and quantifies the trace gases in the atmosphere taking advantage of their molecular absorption structures in the near UV and visible wavelengths of the electromagnetic spectrum (from 0.25 μm to 0.75 μm). Passive DOAS, in particular, can detect the presence of a trace gas in terms of its integrated concentration over the atmospheric path from the sun to the receiver (the so called slant column density). The receiver can be located at ground, as well as on board an aircraft or a satellite platform. Passive DOAS has, therefore, a flexible measurement configuration that allows multiple applications. The ability to properly interpret passive DOAS measurements of atmospheric constituents depends crucially on how well the optical path of light collected by the system is understood. This is because the final product of DOAS is the concentration of a particular species integrated along the path that radiation covers in the atmosphere. This path is not known a priori and can only be evaluated by Radiative Transfer Models (RTMs). These models are used to calculate the so called vertical column density of a given trace gas, which is obtained by dividing the measured slant column density to the so called air mass factor, which is used to quantify the enhancement of the light path length within the absorber layers. In the case of the standard DOAS set-up, in which radiation is collected along the vertical direction (zenith-sky DOAS), calculations of the air mass factor have been made using “simple” single scattering radiative transfer models. This configuration has its highest sensitivity in the stratosphere, in particular during twilight. This is the result of the large enhancement in stratospheric light path at dawn and dusk combined with a relatively short tropospheric path. In order to increase the sensitivity of the instrument towards tropospheric signals, measurements with the telescope pointing the horizon (offaxis DOAS) have to be performed. In this circumstances, the light path in the lower layers can become very long and necessitate the use of radiative transfer models including multiple scattering, the full treatment of atmospheric sphericity and refraction. In this thesis, a recent development in the well-established DOAS technique is described, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS). The MAX-DOAS consists in the simultaneous use of several off-axis directions near the horizon: using this configuration, not only the sensitivity to tropospheric trace gases is greatly improved, but vertical profile information can also be retrieved by combining the simultaneous off-axis measurements with sophisticated RTM calculations and inversion techniques. In particular there is a need for a RTM which is capable of dealing with all the processes intervening along the light path, supporting all DOAS geometries used, and treating multiple scattering events with varying phase functions involved. To achieve these multiple goals a statistical approach based on the Monte Carlo technique should be used. A Monte Carlo RTM generates an ensemble of random photon paths between the light source and the detector, and uses these paths to reconstruct a remote sensing measurement. Within the present study, the Monte Carlo radiative transfer model PROMSAR (PROcessing of Multi-Scattered Atmospheric Radiation) has been developed and used to correctly interpret the slant column densities obtained from MAX-DOAS measurements. In order to derive the vertical concentration profile of a trace gas from its slant column measurement, the AMF is only one part in the quantitative retrieval process. One indispensable requirement is a robust approach to invert the measurements and obtain the unknown concentrations, the air mass factors being known. For this purpose, in the present thesis, we have used the Chahine relaxation method. Ground-based Multiple AXis DOAS, combined with appropriate radiative transfer models and inversion techniques, is a promising tool for atmospheric studies in the lower troposphere and boundary layer, including the retrieval of profile information with a good degree of vertical resolution. This thesis has presented an application of this powerful comprehensive tool for the study of a preserved natural Mediterranean area (the Castel Porziano Estate, located 20 km South-West of Rome) where pollution is transported from remote sources. Application of this tool in densely populated or industrial areas is beginning to look particularly fruitful and represents an important subject for future studies.
Resumo:
Electromagnetic spectrum can be identified as a resource for the designer, as well as for the manufacturer, from two complementary points of view: first, because it is a good in great demand by many different kind of applications; second, because despite its scarce availability, it may be advantageous to use more spectrum than necessary. This is the case of Spread-Spectrum Systems, those systems in which the transmitted signal is spread over a wide frequency band, much wider, in fact, than the minimum bandwidth required to transmit the information being sent. Part I of this dissertation deals with Spread-Spectrum Clock Generators (SSCG) aiming at reducing Electro Magnetic Interference (EMI) of clock signals in integrated circuits (IC) design. In particular, the modulation of the clock and the consequent spreading of its spectrum are obtained through a random modulating signal outputted by a chaotic map, i.e. a discrete-time dynamical system showing chaotic behavior. The advantages offered by this kind of modulation are highlighted. Three different prototypes of chaos-based SSCG are presented in all their aspects: design, simulation, and post-fabrication measurements. The third one, operating at a frequency equal to 3GHz, aims at being applied to Serial ATA, standard de facto for fast data transmission to and from Hard Disk Drives. The most extreme example of spread-spectrum signalling is the emerging ultra-wideband (UWB) technology, which proposes the use of large sections of the radio spectrum at low amplitudes to transmit high-bandwidth digital data. In part II of the dissertation, two UWB applications are presented, both dealing with the advantages as well as with the challenges of a wide-band system, namely: a chaos-based sequence generation method for reducing Multiple Access Interference (MAI) in Direct Sequence UWB Wireless-Sensor-Networks (WSNs), and design and simulations of a Low-Noise Amplifier (LNA) for impulse radio UWB. This latter topic was studied during a study-abroad period in collaboration with Delft University of Technology, Delft, Netherlands.
Resumo:
Lokale sekundäre Prozesse in glasbildenden Materialien sind wegen ihrer Wechselwirkung mit der primären Relaxation von besonderem Interesse. Für D-Sorbitol wurde die beta-Relaxation mit drei verschiedenen dielektrischen Meßtechniken untersucht und die Ergebnisse miteinander verglichen. Im Gegensatz zu konventionellen Messungen der dielektrischen Retardation, detektiert eine echte dielektrische Relaxationsmessung den Zerfall des elektrischen Feldes unter der Bedingung einer konstanten dielektrischen Verschiebung. Eine weitere dielektrische Relaxationsmethode ist die Solvatationsdynamik. Sie detektiert die dielektrische Relaxation in der direkten Umgebung eines Farbstoffmoleküls. Die Übereinstimmung der lokal ermittelten und der makroskopisch gemittelten Ergebnisse für den Glaszustand weisen darauf hin, daß die Sekundärrelaxation in D-Sorbitol eine räumlich homogene Eigenschaft ist. Im Gegensatz zu beta-Prozessen anderer Materialien, zeigt nur der abgeschreckte Glaszustand von ortho-Terphenyl einen sekundären Prozeß. Es wurde beobachtet, daß die beta-Amplitude beim Ausheilen langsam abnimmt und im Gleichgewichtszustand der Flüssigkeit oberhalb der Glasübergangstemperatur völlig verschwindet. Viele glasbildende Materialien, wie z. B. Salol zeigen keinen dielektrischen beta-Prozeß. Im Gegensatz zu Messungen mit Standardkühlraten, zeigt eine stark abgeschreckte Salol-Probe eine symmetrische dielektrische Sekundärrelaxation. Diese neuartige Eigenschaft von Salol verschwindet irreversibel, wenn sich die Temperatur der Glasübergangstemperatur nähert.
Resumo:
The present PhD thesis summarizes the three-years study about the neutronic investigation of a new concept nuclear reactor aiming at the optimization and the sustainable management of nuclear fuel in a possible European scenario. A new generation nuclear reactor for the nuclear reinassance is indeed desired by the actual industrialized world, both for the solution of the energetic question arising from the continuously growing energy demand together with the corresponding reduction of oil availability, and the environment question for a sustainable energy source free from Long Lived Radioisotopes and therefore geological repositories. Among the Generation IV candidate typologies, the Lead Fast Reactor concept has been pursued, being the one top rated in sustainability. The European Lead-cooled SYstem (ELSY) has been at first investigated. The neutronic analysis of the ELSY core has been performed via deterministic analysis by means of the ERANOS code, in order to retrieve a stable configuration for the overall design of the reactor. Further analyses have been carried out by means of the Monte Carlo general purpose transport code MCNP, in order to check the former one and to define an exact model of the system. An innovative system of absorbers has been conceptualized and designed for both the reactivity compensation and regulation of the core due to cycle swing, as well as for safety in order to guarantee the cold shutdown of the system in case of accident. Aiming at the sustainability of nuclear energy, the steady-state nuclear equilibrium has been investigated and generalized into the definition of the ``extended'' equilibrium state. According to this, the Adiabatic Reactor Theory has been developed, together with a New Paradigm for Nuclear Power: in order to design a reactor that does not exchange with the environment anything valuable (thus the term ``adiabatic''), in the sense of both Plutonium and Minor Actinides, it is required indeed to revert the logical design scheme of nuclear cores, starting from the definition of the equilibrium composition of the fuel and submitting to the latter the whole core design. The New Paradigm has been applied then to the core design of an Adiabatic Lead Fast Reactor complying with the ELSY overall system layout. A complete core characterization has been done in order to asses criticality and power flattening; a preliminary evaluation of the main safety parameters has been also done to verify the viability of the system. Burn up calculations have been then performed in order to investigate the operating cycle for the Adiabatic Lead Fast Reactor; the fuel performances have been therefore extracted and inserted in a more general analysis for an European scenario. The present nuclear reactors fleet has been modeled and its evolution simulated by means of the COSI code in order to investigate the materials fluxes to be managed in the European region. Different plausible scenarios have been identified to forecast the evolution of the European nuclear energy production, including the one involving the introduction of Adiabatic Lead Fast Reactors, and compared to better analyze the advantages introduced by the adoption of new concept reactors. At last, since both ELSY and the ALFR represent new concept systems based upon innovative solutions, the neutronic design of a demonstrator reactor has been carried out: such a system is intended to prove the viability of technology to be implemented in the First-of-a-Kind industrial power plant, with the aim at attesting the general strategy to use, to the largest extent. It was chosen then to base the DEMO design upon a compromise between demonstration of developed technology and testing of emerging technology in order to significantly subserve the purpose of reducing uncertainties about construction and licensing, both validating ELSY/ALFR main features and performances, and to qualify numerical codes and tools.
Resumo:
We investigate the statics and dynamics of a glassy,non-entangled, short bead-spring polymer melt with moleculardynamics simulations. Temperature ranges from slightlyabove the mode-coupling critical temperature to the liquidregime where features of a glassy liquid are absent. Ouraim is to work out the polymer specific effects on therelaxation and particle correlation. We find the intra-chain static structure unaffected bytemperature, it depends only on the distance of monomersalong the backbone. In contrast, the distinct inter-chainstructure shows pronounced site-dependence effects at thelength-scales of the chain and the nearest neighbordistance. There, we also find the strongest temperaturedependence which drives the glass transition. Both the siteaveraged coupling of the monomer and center of mass (CM) andthe CM-CM coupling are weak and presumably not responsiblefor a peak in the coherent relaxation time at the chain'slength scale. Chains rather emerge as soft, easilyinterpenetrating objects. Three particle correlations arewell reproduced by the convolution approximation with theexception of model dependent deviations. In the spatially heterogeneous dynamics of our system weidentify highly mobile monomers which tend to follow eachother in one-dimensional paths forming ``strings''. Thesestrings have an exponential length distribution and aregenerally short compared to the chain length. Thus, arelaxation mechanism in which neighboring mobile monomersmove along the backbone of the chain seems unlikely.However, the correlation of bonded neighbors is enhanced. When liquids are confined between two surfaces in relativesliding motion kinetic friction is observed. We study ageneric model setup by molecular dynamics simulations for awide range of sliding speeds, temperatures, loads, andlubricant coverings for simple and molecular fluids. Instabilities in the particle trajectories are identified asthe origin of kinetic friction. They lead to high particlevelocities of fluid atoms which are gradually dissipatedresulting in a friction force. In commensurate systemsfluid atoms follow continuous trajectories for sub-monolayercoverings and consequently, friction vanishes at low slidingspeeds. For incommensurate systems the velocity probabilitydistribution exhibits approximately exponential tails. Weconnect this velocity distribution to the kinetic frictionforce which reaches a constant value at low sliding speeds. This approach agrees well with the friction obtaineddirectly from simulations and explains Amontons' law on themicroscopic level. Molecular bonds in commensurate systemslead to incommensurate behavior, but do not change thequalitative behavior of incommensurate systems. However,crossed chains form stable load bearing asperities whichstrongly increase friction.