850 resultados para relative risk
Resumo:
Purpose of the Study: A framework aids choice of interventions to manage wandering and prevent elopement in consideration of associated risks and mobility needs of wanderers. ---------- Design and Methods: A literature review, together with research results, published wandering tools, clinical reports, author clinical experience, and consensus-based judgments was used to build a decision-making framework. Results: Referencing a published definition of wandering and originating a clinical description of problematic wandering, authors introduce a framework comprising (1) wandering and related behaviors; (2) goals of wandering-specific care, (3) interpersonally, technologically, and policy-mediated wandering interventions, and (4) estimates of relative frequencies of wandering behaviors, magnitudes of elopement risk, and restrictiveness of strategies. ---------- Implications: Safeguarding wanderers from elopement risk is rendered person-centered and humane when goals of care guide intervention choice. Despite limitations, a reasoned, systematized approach to wandering management provides a basis for tailoring a specialized program of care. The need for framework refinement and related research is emphasized.
Resumo:
Background: The effect of patient education on reducing stroke has had mixed effects, raising questions about how to achieve optimal benefit. Because past evaluations have typically lacked an appropriate theoretical base, the design of past research may have missed important effects. --------- Method: This study used a social cognitive framework to identify variables that might change in response to education. A mixed design was used to evaluate two approaches to an intervention, both of which included education. Fifty seniors completed a measure of stroke knowledge and beliefs twice: before and after an intervention that was either standard (educational brochure plus activities that were not about stroke) or enhanced (educational brochure plus activities designed to enhance beliefs about stroke). Outcome measures were health beliefs, intention to exercise to reduce stroke, and stroke knowledge. --------- Results: Selected beliefs changed significantly over time but not differentially across conditions. Beliefs that changed were (a) perceived susceptibility to stroke and (b) perceived benefit of exercise to reduce risk. Benefit beliefs, in particular, were strongly and positively associated with intention to exercise. -------- Conclusion: Findings suggest that basic approaches to patient education may influence health beliefs. More effective stroke prevention programs may result from continued consideration of the role of health beliefs in such programs.
Resumo:
In this thesis we are interested in financial risk and the instrument we want to use is Value-at-Risk (VaR). VaR is the maximum loss over a given period of time at a given confidence level. Many definitions of VaR exist and some will be introduced throughout this thesis. There two main ways to measure risk and VaR: through volatility and through percentiles. Large volatility in financial returns implies greater probability of large losses, but also larger probability of large profits. Percentiles describe tail behaviour. The estimation of VaR is a complex task. It is important to know the main characteristics of financial data to choose the best model. The existing literature is very wide, maybe controversial, but helpful in drawing a picture of the problem. It is commonly recognised that financial data are characterised by heavy tails, time-varying volatility, asymmetric response to bad and good news, and skewness. Ignoring any of these features can lead to underestimating VaR with a possible ultimate consequence being the default of the protagonist (firm, bank or investor). In recent years, skewness has attracted special attention. An open problem is the detection and modelling of time-varying skewness. Is skewness constant or there is some significant variability which in turn can affect the estimation of VaR? This thesis aims to answer this question and to open the way to a new approach to model simultaneously time-varying volatility (conditional variance) and skewness. The new tools are modifications of the Generalised Lambda Distributions (GLDs). They are four-parameter distributions, which allow the first four moments to be modelled nearly independently: in particular we are interested in what we will call para-moments, i.e., mean, variance, skewness and kurtosis. The GLDs will be used in two different ways. Firstly, semi-parametrically, we consider a moving window to estimate the parameters and calculate the percentiles of the GLDs. Secondly, parametrically, we attempt to extend the GLDs to include time-varying dependence in the parameters. We used the local linear regression to estimate semi-parametrically conditional mean and conditional variance. The method is not efficient enough to capture all the dependence structure in the three indices —ASX 200, S&P 500 and FT 30—, however it provides an idea of the DGP underlying the process and helps choosing a good technique to model the data. We find that GLDs suggest that moments up to the fourth order do not always exist, there existence appears to vary over time. This is a very important finding, considering that past papers (see for example Bali et al., 2008; Hashmi and Tay, 2007; Lanne and Pentti, 2007) modelled time-varying skewness, implicitly assuming the existence of the third moment. However, the GLDs suggest that mean, variance, skewness and in general the conditional distribution vary over time, as already suggested by the existing literature. The GLDs give good results in estimating VaR on three real indices, ASX 200, S&P 500 and FT 30, with results very similar to the results provided by historical simulation.
Resumo:
We investigate whether the two 2 zero cost portfolios, SMB and HML, have the ability to predict economic growth for markets investigated in this paper. Our findings show that there are only a limited number of cases when the coefficients are positive and significance is achieved in an even more limited number of cases. Our results are in stark contrast to Liew and Vassalou (2000) who find coefficients to be generally positive and of a similar magnitude. We go a step further and also employ the methodology of Lakonishok, Shleifer and Vishny (1994) and once again fail to support the risk-based hypothesis of Liew and Vassalou (2000). In sum, we argue that search for a robust economic explanation for firm size and book-to-market equity effects needs sustained effort as these two zero cost portfolios do not represent economically relevant risk.
Resumo:
Using the Education Queensland Reform Agenda to illustrate examples and approaches to education reform, this article discusses education reform for at-risk youth. It argues that the characteristics of modernity, the rise of Mode 2 Society, and the power asymmetries associated with the emergence of the politico-economic will contain the reform ambitions of the Education Queensland and other education reform agendas. It is proposed that the State adopt a transgressive and complimentary set of reform strategies including the adoption of distributed governance, making available meaningful school performance data, encouraging experimentation and facilitating broad stakeholder, community and neighbourhood engagement in school planning and operations. The article argues that measures such as these will assist to mobilize trust, minimise social fragmentation, generate and regenerate community resources, build cohesion, foster the socio-cultural-self-identities of 'at-risk' youth and will assist youth to achieve full participation in a robust and vibrant democracy.
Resumo:
Lifecycle funds offered by retirement plan providers allocate aggressively to risky asset classes when the employee participants are young, gradually switching to more conservative asset classes as they grow older and approach retirement. This approach focuses on maximizing growth of the accumulation fund in the initial years and preserving its value in the later years. The authors simulate terminal wealth outcomes based on conventional lifecycle asset allocation rules as well as on contrarian strategies that reverse the direction of asset switching. The evidence suggests that the growth in portfolio size over time significantly impacts the asset allocation decision. Due to the portfolio size effect that is observed by the authors, the terminal value of accumulation in retirement accounts is influenced more by the asset allocation strategy adopted in later years relative to that adopted in early years. By mechanistically switching to conservative assets in the later years of a plan, lifecycle strategies sacrifice significant growth opportunity and prove counterproductive to the participant's wealth accumulation objective. The authors' conclude that this sacrifice does not seem to be compensated adequately in terms of reducing the risk of potentially adverse outcomes.
Resumo:
For participants in defined contribution (DC) plans who refrain from exercising investment choice, plan contributions are invested following the default investment option of their respective plans. Since default investment options of different plans vary widely in terms of their benchmark asset allocation, the most important determinant of investment performance, participants enrolled in these options face significantly different wealth outcomes at retirement. This paper simulates the terminal wealth outcomes under different static asset allocation strategies to evaluate their relative appeal as default investment choice in DC plans. We find that strategies with low or moderate allocation to stocks are consistently outperformed in terms of upside potential of exceeding the participant’s wealth accumulation target at retirement as well as downside risk of falling below that target outcome by aggressive strategies whose allocation to stocks approach 100%. The risk of extremely adverse wealth outcomes for plan participants also does not appear to be very sensitive to asset allocation. Our evidence suggests the appropriateness of strategies heavily tilted towards stocks to be nominated as default investment options in DC plans unless plan providers emphasize predictability of wealth outcomes over adequacy of retirement wealth.
Resumo:
Genetically modified (GM) food products are the source of much controversy and in the context of consumer behaviour, the way in which consumers perceive such food products is of paramount importance both theoretically and practically. Despite this, relatively little research has focused on GM food products from a consumer perspective, and as such, this study seeks to better understand what effects consumer willingness to buy GM food products in Australian consumers.
Resumo:
A decade ago, Queensland University of Technology (QUT) developed an innovative annual Courses Performance Report, but through incremental change, this report became quite labour-intensive. A new risk-based approach to course quality assurance, that consolidates voluminous data in a simple dashboard, responds to the changing context of the higher education sector. This paper will briefly describe QUT’s context and outline the second phase of implementation of this new approach to course quality assurance. The main components are: Individual Course Reports (ICRs), the Consolidated Courses Performance Report (CCPR), Underperforming Courses Status Update and the Strategic Faculty Courses Update (SFCU). These components together form a parsimonious and strategic annual cycle of reporting and place QUT in a positive position to respond to future sector change
Resumo:
This paper looks at the decision-making process that determines the amount of effort frontline service employees will expend in delivering a service in a business-to-business context. Using theories in behavioural economics and interactional and social psychology, the paper develops and presents a model of employee decision-making. Managerial implications, which have the potential to enhance the marketing of business-to-business services and directions for future research in this area, are indicated.
Resumo:
Objective: During hospitalisation older people often experience functional decline which impacts on their future independence. The objective of this study was to evaluate a multifaceted transitional care intervention including home-based exercise strategies for at-risk older people on functional status, independence in activities of daily living, and walking ability. Methods: A randomised controlled trial was undertaken in a metropolitan hospital in Australia with 128 patients (64 intervention, 64 control) aged over 65 years with an acute medical admission and at least one risk factor for hospital readmission. The intervention group received an individually tailored program for exercise and follow-up care which was commenced in hospital and included regular visits in hospital by a physiotherapist and a Registered Nurse, a home visit following discharge, and regular telephone follow-up for 24 weeks following discharge. The program was designed to improve health promoting behaviours, strength, stability, endurance and mobility. Data were collected at baseline, then 4, 12 and 24 weeks following discharge using the Index of Activities of Daily Living (ADL), Instrumental Index of Activities of Daily Living (IADL), and the Walking Impairment Questionnaire (Modified). Results: Significant improvements were found in the intervention group in IADL scores (p<.001), ADL scores (p<.001), and WIQ scale scores (p<.001) in comparison to the control group. The greatest improvements were found in the first four weeks following discharge. Conclusions: Early introduction of a transitional model of care incorporating a tailored exercise program and regular telephone follow-up for hospitalised at-risk older adults can improve independence and functional ability.
Resumo:
The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.
Resumo:
Objective. To provide a preliminary test of a Theory of Planned Behavior (TPB) belief-based intervention to increase adolescents’ sun protective behaviors in a high risk area, Queensland, Australia. Methods. In the period of October-November, 2007 and May-June, 2008, 80 adolescents (14.53 ± 0.69 years) were recruited from two secondary schools (one government and one private) in Queensland after obtaining student, parental, and school informed consent. Adolescents were allocated to either a control or intervention condition based on the class they attended. The intervention comprised three, one hour in-school sessions facilitated by Cancer Council Queensland employees with sessions covering the belief basis of the TPB (i.e., behavioral, normative, and control [barrier and motivator] sun-safe beliefs). Participants completed questionnaires assessing sun-safety beliefs, intentions, and behavior pre- and post-intervention. Repeated Measures Multivariate Analysis of Variance was used to test the effect of the intervention across time on these constructs. Results. Students completing the intervention reported stronger sun-safe normative and motivator beliefs and intentions and the performance of more sun-safe behaviors across time than those in the control condition. Conclusion. Strengthening beliefs about the approval of others and motivators for sun protection may encourage sun-safe cognitions and actions among adolescents.
Resumo:
Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.
Resumo:
Speeding remains a significant contributing factor to road trauma internationally, despite increasingly sophisticated speed management strategies being adopted around the world. Increases in travel speed are associated with increases in crash risk and crash severity. As speed choice is a voluntary behaviour, driver perceptions are important to our understanding of speeding and, importantly, to designing effective behavioural countermeasures. The four studies conducted in this program of research represent a comprehensive approach to examining psychosocial influences on driving speeds in two countries that are at very different levels of road safety development: Australia and China. Akers’ social learning theory (SLT) was selected as the theoretical framework underpinning this research and guided the development of key research hypotheses. This theory was chosen because of its ability to encompass psychological, sociological, and criminological perspectives in understanding behaviour, each of which has relevance to speeding. A mixed-method design was used to explore the personal, social, and legal influences on speeding among car drivers in Queensland (Australia) and Beijing (China). Study 1 was a qualitative exploration, via focus group interviews, of speeding among 67 car drivers recruited from south east Queensland. Participants were assigned to groups based on their age and gender, and additionally, according to whether they self-identified as speeding excessively or rarely. This study aimed to elicit information about how drivers conceptualise speeding as well as the social and legal influences on driving speeds. The findings revealed a wide variety of reasons and circumstances that appear to be used as personal justifications for exceeding speed limits. Driver perceptions of speeding as personally and socially acceptable, as well as safe and necessary were common. Perceptions of an absence of danger associated with faster driving speeds were evident, particularly with respect to driving alone. An important distinction between the speed-based groups related to the attention given to the driving task. Rare speeders expressed strong beliefs about the need to be mindful of safety (self and others) while excessive speeders referred to the driving task as automatic, an absent-minded endeavour, and to speeding as a necessity in order to remain alert and reduce boredom. For many drivers in this study, compliance with speed limits was expressed as discretionary rather than mandatory. Social factors, such as peer and parental influence were widely discussed in Study 1 and perceptions of widespread community acceptance of speeding were noted. In some instances, the perception that ‘everybody speeds’ appeared to act as one rationale for the need to raise speed limits. Self-presentation, or wanting to project a positive image of self was noted, particularly with respect to concealing speeding infringements from others to protect one’s image as a trustworthy and safe driver. The influence of legal factors was also evident. Legal sanctions do not appear to influence all drivers to the same extent. For instance, fear of apprehension appeared to play a role in reducing speeding for many, although previous experiences of detection and legal sanctions seemed to have had limited influence on reducing speeding among some drivers. Disregard for sanctions (e.g., driving while suspended), fraudulent demerit point use, and other strategies to avoid detection and punishment were widely and openly discussed. In Study 2, 833 drivers were recruited from roadside service stations in metropolitan and regional locations in Queensland. A quantitative research strategy assessed the relative contribution of personal, social, and legal factors to recent and future self-reported speeding (i.e., frequency of speeding and intentions to speed in the future). Multivariate analyses examining a range of factors drawn from SLT revealed that factors including self-identity (i.e., identifying as someone who speeds), favourable definitions (attitudes) towards speeding, personal experiences of avoiding detection and punishment for speeding, and perceptions of family and friends as accepting of speeding were all significantly associated with greater self-reported speeding. Study 3 was an exploratory, qualitative investigation of psychosocial factors associated with speeding among 35 Chinese drivers who were recruited from the membership of a motoring organisation and a university in Beijing. Six focus groups were conducted to explore similar issues to those examined in Study 1. The findings of Study 3 revealed many similarities with respect to the themes that arose in Australia. For example, there were similarities regarding personal justifications for speeding, such as the perception that posted limits are unreasonably low, the belief that individual drivers are able to determine safe travel speeds according to personal comfort with driving fast, and the belief that drivers possess adequate skills to control a vehicle at high speed. Strategies to avoid detection and punishment were also noted, though they appeared more widespread in China and also appeared, in some cases, to involve the use of a third party, a topic that was not reported by Australian drivers. Additionally, higher perceived enforcement tolerance thresholds were discussed by Chinese participants. Overall, the findings indicated perceptions of a high degree of community acceptance of speeding and a perceived lack of risk associated with speeds that were well above posted speed limits. Study 4 extended the exploratory research phase in China with a quantitative investigation involving 299 car drivers recruited from car washes in Beijing. Results revealed a relatively inexperienced sample with less than 5 years driving experience, on average. One third of participants perceived that the certainty of penalties when apprehended was low and a similar proportion of Chinese participants reported having previously avoided legal penalties when apprehended for speeding. Approximately half of the sample reported that legal penalties for speeding were ‘minimally to not at all’ severe. Multivariate analyses revealed that past experiences of avoiding detection and punishment for speeding, as well as favourable attitudes towards speeding, and perceptions of strong community acceptance of speeding were most strongly associated with greater self-reported speeding in the Chinese sample. Overall, the results of this research make several important theoretical contributions to the road safety literature. Akers’ social learning theory was found to be robust across cultural contexts with respect to speeding; similar amounts of variance were explained in self-reported speeding in the quantitative studies conducted in Australia and China. Historically, SLT was devised as a theory of deviance and posits that deviance and conformity are learned in the same way, with the balance of influence stemming from the ways in which behaviour is rewarded and punished (Akers, 1998). This perspective suggests that those who speed and those who do not are influenced by the same mechanisms. The inclusion of drivers from both ends of the ‘speeding spectrum’ in Study 1 provided an opportunity to examine the wider utility of SLT across the full range of the behaviour. One may question the use of a theory of deviance to investigate speeding, a behaviour that could, arguably, be described as socially acceptable and prevalent. However, SLT seemed particularly relevant to investigating speeding because of its inclusion of association, imitation, and reinforcement variables which reflect the breadth of factors already found to be potentially influential on driving speeds. In addition, driving is a learned behaviour requiring observation, guidance, and practice. Thus, the reinforcement and imitation concepts are particularly relevant to this behaviour. Finally, current speed management practices are largely enforcement-based and rely on the principles of behavioural reinforcement captured within the reinforcement component of SLT. Thus, the application of SLT to a behaviour such as speeding offers promise in advancing our understanding of the factors that influence speeding, as well as extending our knowledge of the application of SLT. Moreover, SLT could act as a valuable theoretical framework with which to examine other illegal driving behaviours that may not necessarily be seen as deviant by the community (e.g., mobile phone use while driving). This research also made unique contributions to advancing our understanding of the key components and the overall structure of Akers’ social learning theory. The broader SLT literature is lacking in terms of a thorough structural understanding of the component parts of the theory. For instance, debate exists regarding the relevance of, and necessity for including broader social influences in the model as captured by differential association. In the current research, two alternative SLT models were specified and tested in order to better understand the nature and extent of the influence of differential association on behaviour. Importantly, the results indicated that differential association was able to make a unique contribution to explaining self-reported speeding, thereby negating the call to exclude it from the model. The results also demonstrated that imitation was a discrete theoretical concept that should also be retained in the model. The results suggest a need to further explore and specify mechanisms of social influence in the SLT model. In addition, a novel approach was used to operationalise SLT variables by including concepts drawn from contemporary social psychological and deterrence-based research to enhance and extend the way that SLT variables have traditionally been examined. Differential reinforcement was conceptualised according to behavioural reinforcement principles (i.e., positive and negative reinforcement and punishment) and incorporated concepts of affective beliefs, anticipated regret, and deterrence-related concepts. Although implicit in descriptions of SLT, little research has, to date, made use of the broad range of reinforcement principles to understand the factors that encourage or inhibit behaviour. This approach has particular significance to road user behaviours in general because of the deterrence-based nature of many road safety countermeasures. The concept of self-identity was also included in the model and was found to be consistent with the definitions component of SLT. A final theoretical contribution was the specification and testing of a full measurement model prior to model testing using structural equation modelling. This process is recommended in order to reduce measurement error by providing an examination of the psychometric properties of the data prior to full model testing. Despite calls for such work for a number of decades, the current work appears to be the only example of a full measurement model of SLT. There were also a number of important practical implications that emerged from this program of research. Firstly, perceptions regarding speed enforcement tolerance thresholds were highlighted as a salient influence on driving speeds in both countries. The issue of enforcement tolerance levels generated considerable discussion among drivers in both countries, with Australian drivers reporting lower perceived tolerance levels than Chinese drivers. It was clear that many drivers used the concept of an enforcement tolerance in determining their driving speed, primarily with the desire to drive faster than the posted speed limit, yet remaining within a speed range that would preclude apprehension by police. The quantitative results from Studies 2 and 4 added support to these qualitative findings. Together, the findings supported previous research and suggested that a travel speed may not be seen as illegal until that speed reaches a level over the prescribed enforcement tolerance threshold. In other words, the enforcement tolerance appears to act as a ‘de facto’ speed limit, replacing the posted limit in the minds of some drivers. The findings from the two studies conducted in China (Studies 2 and 4) further highlighted the link between perceived enforcement tolerances and a ‘de facto’ speed limit. Drivers openly discussed driving at speeds that were well above posted speed limits and some participants noted their preference for driving at speeds close to ‘50% above’ the posted limit. This preference appeared to be shaped by the perception that the same penalty would be imposed if apprehended, irrespective of what speed they travelling (at least up to 50% above the limit). Further research is required to determine whether the perceptions of Chinese drivers are mainly influenced by the Law of the People’s Republic of China or by operational practices. Together, the findings from both studies in China indicate that there may be scope to refine enforcement tolerance levels, as has happened in other jurisdictions internationally over time, in order to reduce speeding. Any attempts to do so would likely be assisted by the provision of information about the legitimacy and purpose of speed limits as well as risk factors associated with speeding because these issues were raised by Chinese participants in the qualitative research phase. Another important practical implication of this research for speed management in China is the way in which penalties are determined. Chinese drivers described perceptions of unfairness and a lack of transparency in the enforcement system because they were unsure of the penalty that they would receive if apprehended. Steps to enhance the perceived certainty and consistency of the system to promote a more equitable approach to detection and punishment would appear to be welcomed by the general driving public and would be more consistent with the intended theoretical (deterrence) basis that underpins the current speed enforcement approach. The use of mandatory, fixed penalties may assist in this regard. In many countries, speeding attracts penalties that are dependent on the severity of the offence. In China, there may be safety benefits gained from the introduction of a similar graduated scale of speeding penalties and fixed penalties might also help to address the issue of uncertainty about penalties and related perceptions of unfairness. Such advancements would be in keeping with the principles of best practice for speed management as identified by the World Health Organisation. Another practical implication relating to legal penalties, and applicable to both cultural contexts, relates to the issues of detection and punishment avoidance. These two concepts appeared to strongly influence speeding in the current samples. In Australia, detection avoidance strategies reported by participants generally involved activities that are not illegal (e.g., site learning and remaining watchful for police vehicles). The results from China were similar, although a greater range of strategies were reported. The most common strategy reported in both countries for avoiding detection when speeding was site learning, or familiarisation with speed camera locations. However, a range of illegal practices were also described by Chinese drivers (e.g., tampering with or removing vehicle registration plates so as to render the vehicle unidentifiable on camera and use of in-vehicle radar detectors). With regard to avoiding punishment when apprehended, a range of strategies were reported by drivers from both countries, although a greater range of strategies were reported by Chinese drivers. As the results of the current research indicated that detection avoidance was strongly associated with greater self-reported speeding in both samples, efforts to reduce avoidance opportunities are strongly recommended. The practice of randomly scheduling speed camera locations, as is current practice in Queensland, offers one way to minimise site learning. The findings of this research indicated that this practice should continue. However, they also indicated that additional strategies are needed to reduce opportunities to evade detection. The use of point-to-point speed detection (also known as sectio