952 resultados para rail tunnel
Resumo:
Quarterly newsletter prepared by the Iowa Department of Transportation's Office of Rail Transportation.
Resumo:
Quarterly newsletter prepared by the Iowa Department of Transportation's Office of Rail Transportation.
Resumo:
Quarterly newsletter prepared by the Iowa Department of Transportation's Office of Rail Transportation.
Resumo:
Quarterly newsletter prepared by the Iowa Department of Transportation's Office of Rail Transportation.
Resumo:
Quarterly newsletter prepared by the Iowa Department of Transportation's Office of Rail Transportation.
Resumo:
Quarterly newsletter prepared by the Iowa Department of Transportation's Office of Rail Transportation.
Resumo:
PURPOSE: Aerodynamic drag plays an important role in performance for athletes practicing sports that involve high-velocity motions. In giant slalom, the skier is continuously changing his/her body posture, and this affects the energy dissipated in aerodynamic drag. It is therefore important to quantify this energy to understand the dynamic behavior of the skier. The aims of this study were to model the aerodynamic drag of alpine skiers in giant slalom simulated conditions and to apply these models in a field experiment to estimate energy dissipated through aerodynamic drag. METHODS: The aerodynamic characteristics of 15 recreational male and female skiers were measured in a wind tunnel while holding nine different skiing-specific postures. The drag and the frontal area were recorded simultaneously for each posture. Four generalized and two individualized models of the drag coefficient were built, using different sets of parameters. These models were subsequently applied in a field study designed to compare the aerodynamic energy losses between a dynamic and a compact skiing technique. RESULTS: The generalized models estimated aerodynamic drag with an accuracy of between 11.00% and 14.28%, and the individualized models estimated aerodynamic drag with an accuracy between 4.52% and 5.30%. The individualized model used for the field study showed that using a dynamic technique led to 10% more aerodynamic drag energy loss than using a compact technique. DISCUSSION: The individualized models were capable of discriminating different techniques performed by advanced skiers and seemed more accurate than the generalized models. The models presented here offer a simple yet accurate method to estimate the aerodynamic drag acting upon alpine skiers while rapidly moving through the range of positions typical to turning technique.
Resumo:
Water inflows in the Gotthard Highway Tunnel and in the Gotthard Exploration Tunnel are meteoric waters infiltrating at different elevations, on both sides of an important orographic divide. Limited interaction of meteoric waters with gneissic rocks produces Ca-HCO3 and Na-Ca-HCO3 waters, whereas prolonged interaction of meteoric waters with the same rocks generates Na-HCO3 to Na-SO4 waters. Waters circulating in Triassic carbonate-evaporite rocks have a Ca-SO4 composition. Calcium-Na-SO4 waters are also present. They can be produced through interaction of either Na-HCO3 waters with anhydrite or Ca-SO4 waters with a local gneissic rock, as suggested by reaction path modeling. An analogous simulation indicates that Na-HCO3 waters are generated through interaction of Ca-HCO3 waters with a local gneissic rock. The two main SO4-sources present in the Alps are leaching of upper Triassic sulfate minerals and oxidative dissolution of sulfide minerals of crystalline rocks. Values of delta S-34(SO4) < <similar to>+ 9 parts per thousand, are due to oxidative dissolution of sulfide minerals, whereas delta S-34(SO4) > similar to+ 9 parts per thousand are controlled either by bacterial SO4 reduction or leaching of upper Triassic sulfate minerals. Most waters have temperatures similar to the expected values for a geothermal gradient of 22 degreesC/km and are close to thermal equilibrium with rocks. However relatively large, descending flows of cold waters and ascending flows of warm waters are present in both tunnels and determine substantial cooling and heating, respectively, of the interacting rocks. The most import upflow zone of warm, Na-rich waters is below Guspisbach, in the Gotthard Highway Tunnel, at 6.2-9.0 km from the southern portal. These warm waters have equilibrium temperatures of 65-75 degreesC and therefore constitute an important low-enthalpy geothermal resource. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Quarterly newsletter prepared by the Iowa Department of Transportation's Office of Rail Transportation.
Resumo:
Quarterly newsletter of the Iowa Department of Transportation's Office of Rail Transportation.
Resumo:
Quarterly newsletter of the Iowa Department of Transportation's Office of Rail Transportation.
Resumo:
Quarterly newsletter of the Iowa Department of Transportation's Office of Rail Transportation.
Resumo:
Newsletter produced by the Iowa Department of Transportation's Office of Rail Transportation.
Resumo:
The Iowa Railway Finance Authority (IRFA) was created in 1980 by the 68th General Assembly to provide for the financing of rail facilities, and to enhance and continue the operation of essential rail facilities. IRFA was authorized to offer financial assistance for the acquisition, rehabilitation, construction, refinancing, extension, replacement, maintenance, repair or leasing of any rail facility. The 2005 legislative session amended Iowa Code 327H.20 by assigning all repayments of IRFA and other Iowa DOT rail assistance loans to the Rail Revolving Loan and Grant Fund. In 2006, a state appropriation of $235,000 was added to the program. In 2007, $2 million was appropriated to support rail development and job growth.
Resumo:
Iowa Department of Transportation's Office of Rail Transportation newsletter