978 resultados para radiation accretion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation therapy is one of the most common and effective strategies used to treat cancer. The irradiation is usually performed with a fractionated scheme, where the dose required to kill tumour cells is given in several sessions, spaced by specific time intervals, to allow healthy tissue recovery. In this work, we examined the DNA repair dynamics of cells exposed to radiation delivered in fractions, by assessing the response of histone-2AX (H2AX) phosphorylation (γ-H2AX), a marker of DNA double strand breaks. γ-H2AX foci induction and disappearance were monitored following split dose irradiation experiments in which time interval between exposure and dose were varied. Experimental data have been coupled to an analytical theoretical model, in order to quantify key parameters involved in the foci induction process. Induction of γ-H2AX foci was found to be affected by the initial radiation exposure with a smaller number of foci induced by subsequent exposures. This was compared to chromatin relaxation and cell survival. The time needed for full recovery of γ-H2AX foci induction was quantified (12 hours) and the 1:1 relationship between radiation induced DNA double strand breaks and foci numbers was critically assessed in the multiple irradiation scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pattern synthesis approach is applied to a directional modulation (DM) system. A systematic synthesis procedure is suggested which ensures optimal constellation patterns production along pre-specified communication directions, whereas simultaneously conserving energy dispersal in other directions. In this study, the properties of DM systems synthesised from Gaussian magnitude far-field radiation pattern templates are used to illustrate performance benefits with regards to DM bit error rate response compared with those achieved by a conventional steered array.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Abridged) The birth environment of the Sun will have influenced the conditions in the pre-solar nebula, including the attainable chemical complexity, important for prebiotic chemistry. The formation and distribution of complex organic molecules (COMs) in a disk around a T Tauri star is investigated for two scenarios: (i) an isolated disk, and (ii) a disk irradiated externally by a nearby massive star. The chemistry is calculated along the accretion flow from the outer disk inwards using a comprehensive network. Two simulations are performed, one beginning with complex ices and one with simple ices only. For the isolated disk, COMs are transported without major alteration into the inner disk where they thermally desorb into the gas reaching an abundance representative of the initial assumed ice abundance. For simple ices, COMs efficiently form on grain surfaces under the conditions in the outer disk. Gas-phase COMs are released into the molecular layer via photodesorption. For the irradiated disk, complex ices are also transported inwards; however, they undergo thermal processing caused by the warmer conditions in the irradiated disk which tends to reduce their abundance along the accretion flow. For simple ices, grain-surface chemistry cannot synthesise COMs in the outer disk because the necessary grain-surface radicals, which tend to be particularly volatile, are not sufficiently abundant on the grain surfaces. Gas-phase COMs are formed in the inner region of the irradiated disk via gas-phase chemistry induced by the desorption of strongly bound molecules such as methanol; hence, the abundances are not representative of the initial molecular abundances injected into the outer disk. These results suggest that the composition of comets formed in isolated disks may differ from those formed in externally irradiated disks with the latter composed of more simple ices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga & Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he double-detonation explosion scenario of Type Ia supernovae (SNe Ia) has gained increased support from the SN Ia community as a viable progenitor model, making it a promising candidate alongside the well-known single degenerate and double degenerate scenarios. We present delay times of double-detonation SNe, in which a sub-Chandrasekhar mass carbon–oxygen white dwarf (WD) accretes non-dynamically from a helium-rich companion. One of the main uncertainties in quantifying SN rates from double detonations is the (assumed) retention efficiency of He-rich matter. Therefore, we implement a new prescription for the treatment of accretion/accumulation of He-rich matter on WDs. In addition, we test how the results change depending on which criteria are assumed to lead to a detonation in the helium shell. In comparing the results to our standard case (Ruiter et al.), we find that regardless of the adopted He accretion prescription, the SN rates are reduced by only ∼25 per cent if low-mass He shells (≲0.05 M⊙) are sufficient to trigger the detonations. If more massive (0.1 M⊙) shells are needed, the rates decrease by 85 per cent and the delay time distribution is significantly changed in the new accretion model – only SNe with prompt (<500 Myr) delay times are produced. Since theoretical arguments favour low-mass He shells for normal double-detonation SNe, we conclude that the rates from double detonations are likely to be high, and should not critically depend on the adopted prescription for accretion of He.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, there has been growing evidence for the involvement of stem cells in cancer initiation. As a result of their long life span, stem cells may have an increased propensity to accumulate genetic damage relative to differentiated cells. Therefore, stem cells of normal tissues may be important targets for radiation-induced carcinogenesis.

Knowledge of the effects of ionizing radiation (IR) on normal stem cells and on the processes involved in carcinogenesis is very limited. The influence of high doses of IR (>5 Gy) on proliferation, cell cycle and induction of senescence has been demonstrated in stem cells. There have been limited studies of the effects of moderate (0.5–5 Gy) and low doses (<0.5 Gy) of IR on stem cells however, the effect of low dose IR (LD-IR) on normal stem cells as possible targets for radiation-induced carcinogenesis has not been studied in any depth. There may also be important parallels between stem cell responses and those of cancer stem cells, which may highlight potential key common mechanisms of their response and radiosensitivity.

This review will provide an overview of the current knowledge of radiation-induced effects on normal stem cells, with particular focus on low and moderate doses of IR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although, ionizing radiation (IR) has been implicated to cause stress in endoplasmic reticulum (ER), how ER stress signaling and major ER stress sensors modulate cellular response to IR is unclear. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) is an ER transmembrane protein which initiates unfolded protein response (UPR) or ER stress signaling when ER homeostasis is disturbed. Here, we report that down-regulation of PERK resulted in increased clonogenic survival, enhanced DNA repair and reduced apoptosis in irradiated cancer cells. Our study demonstrated that PERK has a role in sensitizing cancer cells to IR. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of gamma-H2AX foci in blood lymphocytes is a promising approach for rapid dose estimation to support patient triage after a radiation accident but has one major drawback: the rapid decline of foci levels post-exposure cause major uncertainties in situations where the exact timing between exposure and blood sampling is unknown. To address this issue, radiation-induced apoptosis (RIA) in lymphocytes was investigated using fluorogenic inhibitors of caspases (FLICA) as an independent biomarker for radiation exposure, which may complement the gamma-H2AX assay. Ex vivo X-irradiated peripheral blood lymphocytes from 17 volunteers showed dose-and time-dependent increases in radiation-induced apoptosis over the first 3 days after exposure, albeit with considerable interindividual variation. Comparison with gamma-H2AX and 53BP1 foci counts suggested an inverse correlation between numbers of residual foci and radiation-induced apoptosis in lymphocytes at 24 h postirradiation (P = 0.007). In T-helper (CD4), T-cytotoxic (CD8) and B-cells (CD19), some significant differences in radiation induced DSBs or apoptosis were observed, however no correlation between foci and apoptosis in lymphocyte subsets was observed at 24 h postirradiation. While gamma-H2AX and 53BP1 foci were rapidly induced and then repaired after exposure, radiation-induced apoptosis did not become apparent until 24 h after exposure. Data from six volunteers with different ex vivo doses and post-exposure times were used to test the capability of the combined assay. Results show that simultaneous analysis of gamma-H2AX and radiation-induced apoptosis may provide a rapid and more accurate triage tool in situations where the delay between exposure and blood sampling is unknown compared to gamma-H2AX alone. This combined approach may improve the accuracy of dose estimations in cases where blood sampling is performed days after the radiation exposure. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fourth workshop of the Multidisciplinary European Low Dose Initiative (MELODI) was organised by STUK-Radiation and Nuclear Safety Authority of Finland. It took place from 12 to 14 September 2012 in Helsinki, Finland. The meeting was attended by 179 scientists and professionals engaged in radiation research and radiation protection. We summarise the major scientific findings of the workshop and the recommendations for updating the MELODI Strategic Research Agenda and Road Map for future low dose research activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-DNA targeted effects of ionising radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understandfng of the likely mechanisms associated with non-DNA targeted effects, particularly with respect to systemic (human health) consequences at low and intermediate doses of ionising radiation. Other outstanding questions include links between the different non-targeted responses and the variations. in response observed between individuals and cell lines, possibly a function of genetic background. Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the non-targeted effects of ionising radiation (NOTE) Integrated Project funded by the European Union. Here we critically examine the evidence for non-targeted effects, discuss apparently contradictory results and consider implications for low-dose radiation health effects. (C) 2012 Elsevier B.V. All rights reserved.