958 resultados para protein complementation assay (PCA)
Resumo:
PURPOSE. We develop a sheep thoracic spine interbody fusion model to study the suitability of polycaprolactone-based scaffold and recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within the thoracic spine. The surgical approach is a mini- open thoracotomy with relevance to minimally invasive deformity correction surgery for adolescent idiopathic scoliosis. To date there are no studies examining the use of this biodegradable implant in combination with biologics in a sheep thoracic spine model. METHODS. In the present study, six sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone-based scaffold plus 0.54μg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion was assessed at six months post-surgery. RESULTS. Computed Tomographic scanning demonstrated higher fusion grades in the rhBMP-2 plus PCL- based scaffold group in comparison to either PCL-based scaffold alone or autograft. These results were supported by histological evaluations of the respective groups. Biomechanical testing revealed significantly higher stiffness for the rhBMP-2 plus PCL- based scaffold group in all loading directions in comparison to the other two groups. CONCLUSION. The results of this study demonstrate that rhBMP-2 plus PCL- based scaffold is a viable bone graft substitute, providing an optimal environment for thoracic interbody spinal fusion in a large animal model.
Resumo:
Introduction Well-designed biodegradable scaffolds in combination with bone growth factors offer a valuable alternative to the current gold standard autograft in spinal fusion surgery Yong et al. (2013). Here we report on 6- vs 12- month data set evaluating the longitudinal performance of a CaP coated polycaprolactone (PCL) scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within a large preclinical animal model. Methods Twelve sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone based scaffold plus 0.54µg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion assessments were performed via high resolution clinical computed tomography and histological evaluation were undertaken at six (n=6) and twelve (n=6) months post-surgery using the Sucato grading system (Sucato et al. 2004). Results The computed tomography fusion grades of the 6- and 12- months in the rhBMP-2 plus PCL- based scaffold group were 1.9 and 2.1 respectively, in the autograft group 1.9 and 1.3 respectively, and in the scaffold alone group 0.9 and 1.17 respectively. There were no statistically significant differences in the fusion scores between 6- and 12- month for the rhBMP plus PCL- based scaffold or PCL – based scaffold alone group however there was a significant reduction in scores in the autograft group. These scores were seen to correlate with histological evaluations of the respective groups. Conclusions The results of this study demonstrate the efficacy of scaffold-based delivery of rhBMP-2 in promoting higher fusion grades at 6- and 12- months in comparison to the scaffold alone or autograft group within the same time frame. Fusion grades achieved at six months using PCL+rhBMP-2 are not significantly increased at twelve months post-surgery.
Resumo:
Objective The aim of this study was to test the possible involvement, relevance and significance of dentin matrix protein 1 (DMP1) in chondrocyte redifferentiation and OA. Methods To examine the function of DMP1 in vitro, bone marrow stromal cells (BMSCs) and articular chondrocytes (ACs) were isolated and differentiated in micromasses in the presence or absence of DMP1 small interfering RNA and analysed for chondrogenic phenotype. The association of DMP1 expression with OA progression was analysed time dependently in the OA menisectomy rat model and in grade-specific OA human samples. Results It was found that DMP1 was strongly related to chondrogenesis, which was evidenced by the strong expression of DMP1 in the 14.5-day mouse embryonic cartilage development stage and in femoral heads of post-natal days 0 and 4. In vitro chondrogenesis in BMSCs and ACs was accompanied by a gradual increase in DMP1 expression at both the gene and protein levels. In addition, knockdown of DMP1 expression led to decreased chondrocyte marker genes, such as COL2A1, ACAN and SOX9, and an increase in the expression of COL10A and MMP13 in ACs. Moreover, treatment with IL-1β, a well-known catabolic culprit of proteoglycan matrix loss, significantly reduced the expression of DMP1. Furthermore, we also observed the suppression of DMP1 protein in a grade-specific manner in knee joint samples from patients with OA. In the menisectomy-induced OA model, an increase in the Mankin score was accompanied by the gradual loss of DMP1 expression. Conclusion Observations from this study suggest that DMP1 may play an important role in maintaining the chondrogenic phenotype and its possible involvement in altered cartilage matrix remodelling and degradation in disease conditions like OA.
Resumo:
Two BRCA2-like sequences are present in the Arabidopsis genome. Both genes are expressed in flower buds and encode nearly identical proteins, which contain four BRC motifs. In a yeast two-hybrid assay, the Arabidopsis Brca2 proteins interact with Rad51 and Dmc1. RNAi constructs aimed at silencing the BRCA2 genes at meiosis triggered a reproducible sterility phenotype, which was associated with dramatic meiosis alterations. We obtained the same phenotype upon introduction of RNAi constructs aimed at silencing the RAD51 gene at meiosis in dmc1 mutant plants. The meiotic figures we observed strongly suggest that homologous recombination is highly disturbed in these meiotic cells, leaving aberrant recombination events to repair the meiotic double-strand breaks. The 'brca2' meiotic phenotype was eliminated in spo11 mutant plants. Our experiments point to an essential role of Brca2 at meiosis in Arabidopsis. We also propose a role for Rad51 in the dmc1 context.
Resumo:
Homologous recombination (HR) reactions mediated by the RAD51 recombinase are essential for DNA and replication fork repair, genome stability, and tumor suppression. RAD51-associated protein 1 (RAD51AP1) is an important HR factor that associates with and stimulates the recombinase activity of RAD51. We have recently shown that RAD51AP1 also partners with the meiotic recombinase DMC1, displaying isoform-specific interactions with DMC1. Here, we have characterized the DMC1 interaction site in RAD51AP1 by a series of truncations and point mutations to uncover a highly conserved WVPP motif critical for DMC1 interaction but dispensable for RAD51 association. This RAD51AP1 motif is reminiscent of the FVPP motif in the tumor suppressor protein BRCA2 that mediates DMC1 interaction. These results further implicate RAD51AP1 in meiotic HR via RAD51 and DMC1.
Resumo:
Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 associated protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex-DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional cooperation is dependent on complex formation between DMC1 and RAD51AP1 and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci colocalize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.
Resumo:
Homologous recombination catalyzed by the RAD51 recombinase is essential for maintaining genome integrity upon the induction of DNA double strand breaks and other DNA lesions. By enhancing the recombinase activity of RAD51, RAD51AP1 (RAD51-associated protein 1) serves a key role in homologous recombination-mediated chromosome damage repair. We show here that RAD51AP1 harbors two distinct DNA binding domains that are both needed for maximal protein activity under physiological conditions. We have finely mapped the two DNA binding domains in RAD51AP1 and generated mutant variants that are impaired in either or both of the DNA binding domains. Examination of these mutants reveals that both domains are indispensable for RAD51AP1 function in cells. These and other results illuminate the mechanistic basis of RAD51AP1 action in homologous DNA repair.
Resumo:
The BRC repeat is a structural motif in the tumor suppressor BRCA2 (breast cancer type 2 susceptibility protein), which promotes homologous recombination (HR) by regulating RAD51 recombinase activity. To date, the BRC repeat has not been observed in other proteins, so that its role in HR is inferred only in the context of BRCA2. Here, we identified a BRC repeat variant, named BRCv, in the RECQL5 helicase, which possesses anti-recombinase activity in vitro and suppresses HR and promotes cellular resistance to camptothecin-induced replication stress in vivo. RECQL5-BRCv interacted with RAD51 through two conserved motifs similar to those in the BRCA2-BRC repeat. Mutations of either motif compromised functions of RECQL5, including association with RAD51, inhibition of RAD51-mediated D-loop formation, suppression of sister chromatid exchange, and resistance to camptothecin-induced replication stress. Potential BRCvs were also found in other HR regulatory proteins, including Srs2 and Sgs1, which possess anti-recombinase activities similar to that of RECQL5. A point mutation in the predicted Srs2-BRCv disrupted the ability of the protein to bind RAD51 and to inhibit D-loop formation. Thus, BRC is a common RAD51 interaction module that can be utilized by different proteins to either promote HR, as in the case of BRCA2, or to suppress HR, as in RECQL5.
Resumo:
An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS), but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs) are shown to effectively direct in vitro differentiation of neural stem cells (NSCs) predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs) treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~. 75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~. 150. ns) micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons) and O4 (for oligodendrocytes), while the expression of GFAP (for astrocytes) remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO) production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives. © 2013.
Resumo:
The practice of medicine has always aimed at individualized treatment of disease. The relationship between patient and physician has always been a personal one, and the physician's choice of treatment has been intended to be the best fit for the patient's needs. The necessary pooling/grouping of disease families and their assignment to a number of drugs or treatment methods has, consequently, led to an increase in the number of effective therapies. However, given the heterogeneity of most human diseases, and cancer specifically, it is currently impossible for the treating clinician to effectively predict a patient's response and outcome based on current technologies, much less the idiosyncratic resistances and adverse effects associated with the limited therapeutic options.
Resumo:
Novel nanostructures such as vertically aligned carbon nanotube (CNT) arrays have received increasing interest as drug delivery carriers. In the present study, two CNT arrays with extreme surface wettabilities are fabricated and their effects on the release of recombinant human bone morphogenetic protein-2 (rhBMP-2) are investigated. It is found that the superhydrophilic arrays retained a larger amount of rhBMP-2 than the superhydrophobic ones. Further use of a poloxamer diffusion layer delayed the initial burst and resulted in a greater total amount of rhBMP-2 released from both surfaces. In addition, rhBMP-2 bound to the superhydrophilic CNT arrays remained bioactive while they denatured on the superhydrophobic surfaces. These results are related to the combined effects of rhBMP-2 molecules interacting with poloxamer and the surface, which could be essential in the development of advanced carriers with tailored surface functionalities.
Resumo:
Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the maintenance of genomic stability. Our previous work has implicated the single-stranded DNA binding protein, hSSB1/NABP2, in the repair of DNA double-strand breaks via homologous recombination. Here, we demonstrate that hSSB1 relocates to hydroxyurea (HU)-damaged replication forks where it is required for ATR and Chk1 activation and recruitment of Mre11 and Rad51. Consequently, hSSB1-depleted cells fail to repair and restart stalled replication forks. hSSB1 deficiency causes accumulation of DNA strand breaks and results in chromosome aberrations observed in mitosis, ultimately resulting in hSSB1 being required for survival to HU and camptothecin. Overall, our findings demonstrate the importance of hSSB1 in maintaining and repairing DNA replication forks and for overall genomic stability.
Resumo:
While genomics provide important information about the somatic genetic changes, and RNA transcript profiling can reveal important expression changes that correlate with outcome and response to therapy, it is the proteins that do the work in the cell. At a functional level, derangements within the proteome, driven by post-translational and epigenetic modifications, such as phosphorylation, is the cause of a vast majority of human diseases. Cancer, for instance, is a manifestation of deranged cellular protein molecular networks and cell signaling pathways that are based on genetic changes at the DNA level. Importantly, the protein pathways contain the drug targets in signaling networks that govern overall cellular survival, proliferation, invasion and cell death. Consequently, the promise of proteomics resides in the ability to extend analysis beyond correlation to causality. A critical gap in the information knowledge base of molecular profiling is an understanding of the ongoing activity of protein signaling in human tissue: what is activated and “in use” within the human body at any given point in time. To address this gap, we have invented a new technology, called reverse phase protein microarrays, that can generate a functional read-out of cell signaling networks or pathways for an individual patient obtained directly from a biopsy specimen. This “wiring diagram” can serve as the basis for both, selection of a therapy and patient stratification.
Resumo:
Cancer can be defined as a deregulation or hyperactivity in the ongoing network of intracellular and extracellular signaling events. Reverse phase protein microarray technology may offer a new opportunity to measure and profile these signaling pathways, providing data on post-translational phosphorylation events not obtainable by gene microarray analysis. Treatment of ovarian epithelial carcinoma almost always takes place in a metastatic setting since unfortunately the disease is often not detected until later stages. Thus, in addition to elucidation of the molecular network within a tumor specimen, critical questions are to what extent do signaling changes occur upon metastasis and are there common pathway elements that arise in the metastatic microenvironment. For individualized combinatorial therapy, ideal therapeutic selection based on proteomic mapping of phosphorylation end points may require evaluation of the patient's metastatic tissue. Extending these findings to the bedside will require the development of optimized protocols and reference standards. We have developed a reference standard based on a mixture of phosphorylated peptides to begin to address this challenge.
Resumo:
A comprehensive study was undertaken involving chemical (inorganic and organic) and bioanalytical (a suite of 14 in vitro bioassays) assessments of coal seam gas (coal bed methane) associated water (CSGW) in Queensland, Australia. CSGW is a by-product of the gas extraction process and is generally considered as water of poor quality. This was done to better understand what is known about the potential biological and environmental effects associated with the organic constituents of CSGW in Australia. In Queensland, large amounts of associated water must be withdrawn from coal seams to allow extraction of the gas. CSGW is disposed of via release to surface water, reinjected to groundwater or reused for irrigation of crops or pasture, supplied for power station cooling and or reinjected specifically to augment drinking water aquifers. Groundwater samples were collected from private wells tapping into the Walloon Coal Measures, the same coal aquifer exploited for coal seam gas production in the Surat Basin, Australia. The inorganic characteristics of these water samples were almost identical to the CSGW entering the nearby gas company operated Talinga-Condabri Water Treatment Facility. The water is brackish with a pH of 8 to 9, high sodium, bicarbonate and chloride concentrations but low calcium, magnesium and negligible sulphate concentrations. Only low levels of polyaromatic hydrocarbons (PAHs) were detected in the water samples, and neither phenols nor volatile organic compounds were found. Results from the bioassays showed no genotoxicity, protein damage, or activation of hormone receptors (with the exception of the estrogen receptor). However, five of the 14 bioassays gave positive responses: an arylhydrocarbon-receptor gene activation assay (AhR-CAFLUX), estrogenic endocrine activity (ERα-CALUX), oxidative stress response (AREc32), interference with cytokine production (THP1-CPA) and non-specific toxicity (Microtox). The observed effects were benchmarked against known water sources and were similar to secondary treated wastewater effluent, stormwater and surface water. As mixture toxicity modelling demonstrated, the detected PAHs explained less than 5% of the observed biological effects.