973 resultados para probability models
Resumo:
This paper presents an approach to autonomously monitor the behavior of a robot endowed with several navigation and locomotion modes, adapted to the terrain to traverse. The mode selection process is done in two steps: the best suited mode is firstly selected on the basis of initial information or a qualitative map built on-line by the robot. Then, the motions of the robot are monitored by various processes that update mode transition probabilities in a Markov system. The paper focuses on this latter selection process: the overall approach is depicted, and preliminary experimental results are presented
Resumo:
Many newspapers and magazines have added “social media features” to their web-based information services in order to allow users to participate in the production of content. This study examines the specific impact of the firm’s investment in social media features on their online business models. We make a comparative case study of four Scandinavian print media firms that have added social media features to their online services. We show how social media features lead to online business model innovation, particularly linked to the firms’ value propositions. The paper discusses the repercussions of this transformation on firms’ relationship with consumers and with traditional content contributors. The modified value proposition also requires firms to acquire new competences in order to reap full benefit of their social media investments. We show that the firms have been unable to do so since they have not allowed the social media features to affect their online revenue models.
Resumo:
A typology of music distribution models is proposed consisting of the ownership model, the access model, and the context model. These models are not substitutes for each other and may co‐exist serving different market niches. The paper argues that increasingly the economic value created from recorded music is based on con‐text rather than on ownership. During this process, access‐based services temporarily generate economic value, but such services are destined to eventually become commoditised.
Resumo:
Risk taking is central to human activity. Consequently, it lies at the focal point of behavioral sciences such as neuroscience, economics, and finance. Many influential models from these sciences assume that financial risk preferences form a stable trait. Is this assumption justified and, if not, what causes the appetite for risk to fluctuate? We have previously found that traders experience a sustained increase in the stress hormone cortisol when the amount of uncertainty, in the form of market volatility, increases. Here we ask whether these elevated cortisol levels shift risk preferences. Using a double-blind, placebo-controlled, cross-over protocol we raised cortisol levels in volunteers over eight days to the same extent previously observed in traders. We then tested for the utility and probability weighting functions underlying their risk taking, and found that participants became more risk averse. We also observed that the weighting of probabilities became more distorted among men relative to women. These results suggest that risk preferences are highly dynamic. Specifically, the stress response calibrates risk taking to our circumstances, reducing it in times of prolonged uncertainty, such as a financial crisis. Physiology-induced shifts in risk preferences may thus be an under-appreciated cause of market instability.
Resumo:
The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland–Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.
Resumo:
Due to knowledge gaps in relation to urban stormwater quality processes, an in-depth understanding of model uncertainty can enhance decision making. Uncertainty in stormwater quality models can originate from a range of sources such as the complexity of urban rainfall-runoff-stormwater pollutant processes and the paucity of observed data. Unfortunately, studies relating to epistemic uncertainty, which arises from the simplification of reality are limited and often deemed mostly unquantifiable. This paper presents a statistical modelling framework for ascertaining epistemic uncertainty associated with pollutant wash-off under a regression modelling paradigm using Ordinary Least Squares Regression (OLSR) and Weighted Least Squares Regression (WLSR) methods with a Bayesian/Gibbs sampling statistical approach. The study results confirmed that WLSR assuming probability distributed data provides more realistic uncertainty estimates of the observed and predicted wash-off values compared to OLSR modelling. It was also noted that the Bayesian/Gibbs sampling approach is superior compared to the most commonly adopted classical statistical and deterministic approaches commonly used in water quality modelling. The study outcomes confirmed that the predication error associated with wash-off replication is relatively higher due to limited data availability. The uncertainty analysis also highlighted the variability of the wash-off modelling coefficient k as a function of complex physical processes, which is primarily influenced by surface characteristics and rainfall intensity.
Resumo:
In this paper an approach is presented for identification of a reduced model for coherent areas in power systems using phasor measurement units to represent the inter-area oscillations of the system. The generators which are coherent in a wide range of operating conditions form the areas in power systems and the reduced model is obtained by representing each area by an equivalent machine. The reduced nonlinear model is then identified based on the data obtained from measurement units. The simulation is performed on three test systems and the obtained results show high accuracy of identification process.
Resumo:
Exact solutions of partial differential equation models describing the transport and decay of single and coupled multispecies problems can provide insight into the fate and transport of solutes in saturated aquifers. Most previous analytical solutions are based on integral transform techniques, meaning that the initial condition is restricted in the sense that the choice of initial condition has an important impact on whether or not the inverse transform can be calculated exactly. In this work we describe and implement a technique that produces exact solutions for single and multispecies reactive transport problems with more general, smooth initial conditions. We achieve this by using a different method to invert a Laplace transform which produces a power series solution. To demonstrate the utility of this technique, we apply it to two example problems with initial conditions that cannot be solved exactly using traditional transform techniques.
Resumo:
Many model-based investigation techniques, such as sensitivity analysis, optimization, and statistical inference, require a large number of model evaluations to be performed at different input and/or parameter values. This limits the application of these techniques to models that can be implemented in computationally efficient computer codes. Emulators, by providing efficient interpolation between outputs of deterministic simulation models, can considerably extend the field of applicability of such computationally demanding techniques. So far, the dominant techniques for developing emulators have been priors in the form of Gaussian stochastic processes (GASP) that were conditioned with a design data set of inputs and corresponding model outputs. In the context of dynamic models, this approach has two essential disadvantages: (i) these emulators do not consider our knowledge of the structure of the model, and (ii) they run into numerical difficulties if there are a large number of closely spaced input points as is often the case in the time dimension of dynamic models. To address both of these problems, a new concept of developing emulators for dynamic models is proposed. This concept is based on a prior that combines a simplified linear state space model of the temporal evolution of the dynamic model with Gaussian stochastic processes for the innovation terms as functions of model parameters and/or inputs. These innovation terms are intended to correct the error of the linear model at each output step. Conditioning this prior to the design data set is done by Kalman smoothing. This leads to an efficient emulator that, due to the consideration of our knowledge about dominant mechanisms built into the simulation model, can be expected to outperform purely statistical emulators at least in cases in which the design data set is small. The feasibility and potential difficulties of the proposed approach are demonstrated by the application to a simple hydrological model.
Resumo:
An important aspect of decision support systems involves applying sophisticated and flexible statistical models to real datasets and communicating these results to decision makers in interpretable ways. An important class of problem is the modelling of incidence such as fire, disease etc. Models of incidence known as point processes or Cox processes are particularly challenging as they are ‘doubly stochastic’ i.e. obtaining the probability mass function of incidents requires two integrals to be evaluated. Existing approaches to the problem either use simple models that obtain predictions using plug-in point estimates and do not distinguish between Cox processes and density estimation but do use sophisticated 3D visualization for interpretation. Alternatively other work employs sophisticated non-parametric Bayesian Cox process models, but do not use visualization to render interpretable complex spatial temporal forecasts. The contribution here is to fill this gap by inferring predictive distributions of Gaussian-log Cox processes and rendering them using state of the art 3D visualization techniques. This requires performing inference on an approximation of the model on a discretized grid of large scale and adapting an existing spatial-diurnal kernel to the log Gaussian Cox process context.
Resumo:
Childhood autism falls under the guise of autism spectrum disorders and is generally found in children over two years of age. There are of course variations in severity and clinical manifestations, however the most common features being disinterest in social interaction and engagement in ritualistic and repetitive behaviours. In Singapore the incidence of autism is on the rise as parents are becoming more aware of the early signs of autism and seek healthcare programmes to ensure the quality of life for their child is optimised. Two such programmes, Applied Behaiour Analysis and Floortime approach have proven successful in alleviating some of the behavioural and social skills problems associated with autism. Using positive behaviour reinforcement both Applied Behaviour Analysis and Floortime approach reward behaviour associated with positive social responses.
Resumo:
Many large-scale GNSS CORS networks have been deployed around the world to support various commercial and scientific applications. To make use of these networks for real-time kinematic positioning services, one of the major challenges is the ambiguity resolution (AR) over long inter-station baselines in the presence of considerable atmosphere biases. Usually, the widelane ambiguities are fixed first, followed by the procedure of determination of the narrowlane ambiguity integers based on the ionosphere-free model in which the widelane integers are introduced as known quantities. This paper seeks to improve the AR performance over long baseline through efficient procedures for improved float solutions and ambiguity fixing. The contribution is threefold: (1) instead of using the ionosphere-free measurements, the absolute and/or relative ionospheric constraints are introduced in the ionosphere-constrained model to enhance the model strength, thus resulting in the better float solutions; (2) the realistic widelane ambiguity precision is estimated by capturing the multipath effects due to the observation complexity, leading to improvement of reliability of widelane AR; (3) for the narrowlane AR, the partial AR for a subset of ambiguities selected according to the successively increased elevation is applied. For fixing the scalar ambiguity, an error probability controllable rounding method is proposed. The established ionosphere-constrained model can be efficiently solved based on the sequential Kalman filter. It can be either reduced to some special models simply by adjusting the variances of ionospheric constraints, or extended with more parameters and constraints. The presented methodology is tested over seven baselines of around 100 km from USA CORS network. The results show that the new widelane AR scheme can obtain the 99.4 % successful fixing rate with 0.6 % failure rate; while the new rounding method of narrowlane AR can obtain the fix rate of 89 % with failure rate of 0.8 %. In summary, the AR reliability can be efficiently improved with rigorous controllable probability of incorrectly fixed ambiguities.
Resumo:
This article presents new theoretical and empirical evidence on the forecasting ability of prediction markets. We develop a model that predicts that the time until expiration of a prediction market should negatively affect the accuracy of prices as a forecasting tool in the direction of a ‘favourite/longshot bias’. That is, high-likelihood events are underpriced, and low-likelihood events are over-priced. We confirm this result using a large data set of prediction market transaction prices. Prediction markets are reasonably well calibrated when time to expiration is relatively short, but prices are significantly biased for events farther in the future. When time value of money is considered, the miscalibration can be exploited to earn excess returns only when the trader has a relatively low discount rate.
Resumo:
In this work, we summarise the development of a ranking principle based on quantum probability theory, called the Quantum Probability Ranking Principle (QPRP), and we also provide an overview of the initial experiments performed employing the QPRP. The main difference between the QPRP and the classic Probability Ranking Principle, is that the QPRP implicitly captures the dependencies between documents by means of quantum interference". Subsequently, the optimal ranking of documents is not based solely on documents' probability of relevance but also on the interference with the previously ranked documents. Our research shows that the application of quantum theory to problems within information retrieval can lead to consistently better retrieval effectiveness, while still being simple, elegant and tractable.
Resumo:
Ranking documents according to the Probability Ranking Principle has been theoretically shown to guarantee optimal retrieval effectiveness in tasks such as ad hoc document retrieval. This ranking strategy assumes independence among document relevance assessments. This assumption, however, often does not hold, for example in the scenarios where redundancy in retrieved documents is of major concern, as it is the case in the sub–topic retrieval task. In this chapter, we propose a new ranking strategy for sub–topic retrieval that builds upon the interdependent document relevance and topic–oriented models. With respect to the topic– oriented model, we investigate both static and dynamic clustering techniques, aiming to group topically similar documents. Evidence from clusters is then combined with information about document dependencies to form a new document ranking. We compare and contrast the proposed method against state–of–the–art approaches, such as Maximal Marginal Relevance, Portfolio Theory for Information Retrieval, and standard cluster–based diversification strategies. The empirical investigation is performed on the ImageCLEF 2009 Photo Retrieval collection, where images are assessed with respect to sub–topics of a more general query topic. The experimental results show that our approaches outperform the state–of–the–art strategies with respect to a number of diversity measures.