886 resultados para preparation and synthetic applications
Resumo:
The final goal of the bioassay developed during the first two years of my Ph.D. was its application for the screening of antioxidant activity of nutraceuticals and for monitoring the intracellular H2O2 production in peripheral blood mononuclear cells (PBMCs) from hypercholesterolemic subjects before and after two months treatment with Evolocumab, a new generation LDL-cholesterol lowering drug. Moreover, a recombinant bioluminescent protein was developed during the last year using the Baculovirus expression system in insect cells. In particular, the protein combines the extracellular domain (ECD) of the Notch high affinity mutated form of one of the selective Notch ligands defined as Jagged 1 (Jag1) with a red emitting firefly luciferase since a pivotal role of “aberrant” Notch signaling activation in colorectal cancer (CRC) was reported. The probe was validated and characterized in terms of analytical performance and through imaging experiments, in order to understand if Jagged1-FLuc binding correlates with a Notch signaling overexpression and activation in CRC progression.
Resumo:
The stable increase in average life expectancy and the consecutive increase in the number of cases of bone related diseases has led to a growing interest in the development of materials that can promote bone repair and/or replacement. Among the best candidates are those materials that have a high similarity to bones, in terms of composition, structure, morphology and functionality. Biomineralized tissue, and thus also bones, have three main components: water, an organic matrix and an inorganic deposit. In vertebrates, the inorganic deposit consists of what is called biological apatite, which slightly differ from stoichiometric hydroxyapatite (HA) both in crystallographic terms and in the presence of foreign atoms and species. This justifies the great attention towards calcium phosphates, which show excellent biocompatibility and bioactivity. The performances of the material and the response of the biological tissue can be further improved through their functionalization with ions, biologically active molecules and nanostructures. This thesis focuses on several possible functionalizations of calcium phosphates, and their effects on chemical properties and biological performances. In particular, the functionalizing agents include several biologically relevant ions, such as Cobalt (Co), Manganese (Mn), Strontium (Sr) and Zinc (Zn); two organic molecules, a flavonoid (Quercetin) and a polyphenol (Curcumin); and nanoparticles, namely tungsten oxide (WO3) NPs. Functionalization was carried out on various calcium phosphates: dicalcium phosphate dihydrate (DCPD), dicalcium phosphate anhydrous (DCPA) and hydroxyapatite (HA). Two different strategies of functionalization were applied: direct synthesis and adsorption from solution. Finally, a chapter is devoted to a preliminary study on the development of cements based on some of the functionalized phosphates obtained.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are a large class of π-conjugated organic molecules with fused aromatic rings, which can be considered as fragments of 2D-graphene and have been extensively studied for their unique optical and electronic properties. The aim of this study is to understand the complex electrochemical behaviour of planar, curved, and heteroatom doped polycyclic aromatic molecules, particularly focusing on the oxidative coupling of their radical cations and the electrochemically induced cyclodehydrogenation reactions. In the first part of this thesis, the class of PAHs and aromatic nanostructures are introduced, and the reactivity of electrogenerated species is discussed, focusing on the electrochemical approach for the synthesis of extended π-conjugated structures. Subsequently, the electrochemical properties and reactivity of electrogenerated radical ions of planar and curved polyaromatics are correlated to their structures. In the third chapter, electrochemical cyclodehydrogenation of hexaphenylbenzene is used to prepare self-assembled hexabenzocoronene, directly deposited on an interdigitated electrode, which was characterised as organic electrochemical transistor. In the fourth chapter, the electrochemical behaviour of a family of azapyrene derivatives has been carefully investigated together with the electrogenerated chemiluminescence (ECL), both by ion-annihilation and co-reactant methods. Two structural azapyrene isomers with different nitrogen positions are thoroughly discussed in terms of redox and ECL properties. Interestingly, the ECL of only one of them showed a double emission with excimer formation. A detailed mechanism is discussed for the ECL by co-reactant benzoyl peroxide, to rationalise the different ECL behaviours of the two isomers on the basis of their topologically modulated electronic properties. In conclusion, the different electrochemical behaviours of PAHs were shown, focussing on the chemical reactivity of the electrogenerated species and taking advantage of it for important processes spanning from unconventional synthesis methods for carbon nanostructures to the exploitation of self-assembled nanostructured systems in organic electronics, to novel organic emitters in ECL.
Resumo:
Big data and AI are paving the way to promising scenarios in clinical practice and research. However, the use of such technologies might clash with GDPR requirements. Today, two forces are driving the EU policies in this domain. The first is the necessity to protect individuals’ safety and fundamental rights. The second is to incentivize the deployment of innovative technologies. The first objective is pursued by legislative acts such as the GDPR or the AIA, the second is supported by the new data strategy recently launched by the European Commission. Against this background, the thesis analyses the issue of GDPR compliance when big data and AI systems are implemented in the health domain. The thesis focuses on the use of co-regulatory tools for compliance with the GDPR. This work argues that there are two level of co-regulation in the EU legal system. The first, more general, is the approach pursued by the EU legislator when shaping legislative measures that deal with fast-evolving technologies. The GDPR can be deemed a co-regulatory solution since it mainly introduces general requirements, which implementation shall then be interpretated by the addressee of the law following a risk-based approach. This approach, although useful is costly and sometimes burdensome for organisations. The second co-regulatory level is represented by specific co-regulatory tools, such as code of conduct and certification mechanisms. These tools are meant to guide and support the interpretation effort of the addressee of the law. The thesis argues that the lack of co-regulatory tools which are supposed to implement data protection law in specific situations could be an obstacle to the deployment of innovative solutions in complex scenario such as the health ecosystem. The thesis advances hypothesis on theoretical level about the reasons of such a lack of co-regulatory solutions.
Resumo:
At the intersection of biology, chemistry, and engineering, biosensors are a multidisciplinary innovation that provide a cost-effective alternative to traditional laboratory techniques. Due to their advantages, biosensors are used in medical diagnostics, environmental monitoring, food safety and many other fields. The first part of the thesis is concerned with learning the state of the art of paper-based immunosensors with bioluminescent (BL) and chemiluminescent (CL) detection. The use of biospecific assays combined with CL detection and paper-based technology offers an optimal approach to creating analytical tools for on-site applications and we have focused on the specific areas that need to be considered more in order to ensure a future practical implementation of these methods in routine analyses. The subsequent part of the thesis addresses the development of an autonomous lab-on-chip platform for performing chemiluminescent-based bioassays in space environment, exploiting a CubeSat platform for astrobiological investigations. An origami-inspired microfluidic paper-based analytical device has been developed with the purpose of assesses its performance in space and to evaluate its functionality and the resilience of the (bio)molecules when exposed to a radiation-rich environment. Subsequently, we designed a paper-based assay to detect traces of ovalbumin in food samples, creating a user-friendly immunosensing platform. To this purpose, we developed an origami device that exploits a competitive immunoassay coupled with chemiluminescence detection and magnetic microbeads used to immobilize ovalbumin on paper. Finally, with the aim of exploring the use of biomimetic materials, an hydrogel-based chemiluminescence biosensor for the detection of H2O2 and glucose was developed. A guanosine hydrogel was prepared and loaded with luminol and hemin, miming a DNAzyme activity. Subsequently, the hydrogel was modified by incorporating glucose oxidase enzyme to enable glucose biosensing. The emitted photons were detected using a portable device equipped with a smartphone's CMOS (complementary metal oxide semiconductor) camera for CL emission detection.
Resumo:
Quantitative Susceptibility Mapping (QSM) is an advanced magnetic resonance technique that can quantify in vivo biomarkers of pathology, such as alteration in iron and myelin concentration. It allows for the comparison of magnetic susceptibility properties within and between different subject groups. In this thesis, QSM acquisition and processing pipeline are discussed, together with clinical and methodological applications of QSM to neurodegeneration. In designing the studies, significant emphasis was placed on results reproducibility and interpretability. The first project focuses on the investigation of cortical regions in amyotrophic lateral sclerosis. By examining various histogram susceptibility properties, a pattern of increased iron content was revealed in patients with amyotrophic lateral sclerosis compared to controls and other neurodegenerative disorders. Moreover, there was a correlation between susceptibility and upper motor neuron impairment, particularly in patients experiencing rapid disease progression. Similarly, in the second application, QSM was used to examine cortical and sub-cortical areas in individuals with myotonic dystrophy type 1. The thalamus and brainstem were identified as structures of interest, with relevant correlations with clinical and laboratory data such as neurological evaluation and sleep records. In the third project, a robust pipeline for assessing radiomic susceptibility-based features reliability was implemented within a cohort of patients with multiple sclerosis and healthy controls. Lastly, a deep learning super-resolution model was applied to QSM images of healthy controls. The employed model demonstrated excellent generalization abilities and outperformed traditional up-sampling methods, without requiring a customized re-training. Across the three disorders investigated, it was evident that QSM is capable of distinguishing between patient groups and healthy controls while establishing correlations between imaging measurements and clinical data. These studies lay the foundation for future research, with the ultimate goal of achieving earlier and less invasive diagnoses of neurodegenerative disorders within the context of personalized medicine.
Resumo:
In modern society, security issues of IT Systems are intertwined with interdisciplinary aspects, from social life to sustainability, and threats endanger many aspects of every- one’s daily life. To address the problem, it’s important that the systems that we use guarantee a certain degree of security, but to achieve this, it is necessary to be able to give a measure to the amount of security. Measuring security is not an easy task, but many initiatives, including European regulations, want to make this possible. One method of measuring security is based on the use of security metrics: those are a way of assessing, from various aspects, vulnera- bilities, methods of defense, risks and impacts of successful attacks then also efficacy of reactions, giving precise results using mathematical and statistical techniques. I have done literature research to provide an overview on the meaning, the effects, the problems, the applications and the overall current situation over security metrics, with particular emphasis in giving practical examples. This thesis starts with a summary of the state of the art in the field of security met- rics and application examples to outline the gaps in current literature, the difficulties found in the change of application context, to then advance research questions aimed at fostering the discussion towards the definition of a more complete and applicable view of the subject. Finally, it stresses the lack of security metrics that consider interdisciplinary aspects, giving some potential starting point to develop security metrics that cover all as- pects involved, taking the field to a new level of formal soundness and practical usability.
Resumo:
The rising of concerns around the scarcity of non-renewable resources has raised curiosity around new frontiers in the polymer science field. Biopolymers is a general term describing different kind of polymers that are linked with the biological world because of either monomer derivation, end of life degradation or both. The current work is aimed at studying one example of both biopolymers types. Polyhydroxibutyrate (P3HB) is a biodegradable microbial-produced polymer which holds massive potentiality as a substitute of polyolefins such as polypropylene. Though, its highly crystalline nature and stereoregularity of structure make it difficult to work with. The project P3HB-Mono take advantage of polarized Raman spectroscopy to see how annealing of chains with different weights influence the crystallinity and molecular structure of the polymer, eventually reflecting on its mechanical properties. The technique employed is also optimal in order to see how mesophase, a particular conformation of chains different from crystalline and amorphous phase, develops in the polymer structure and changes depending on temperature and mechanical stress applied to the fiber. Polycaprolactone (PCL) on the other hand is a biodegradable fossil-fuel polymer which has biocompatibility and bio-resorbability features. As a consequence this material is very appealing for medical industry and can be used for different applications in this field. One interesting option is to produce narrow and long liquid filled fibers for drug delivery inside human body, using a traditional technique in an innovative way. The project BioLiCoF investigates the feasability of producing liquid filled fibers using melt-spinning techniques and will examine the role that melt-spinning parameters and liquids employed as a core solution have on the final fiber. The physical analysis of the fibers is also interpreted and idea on future developments of the trials are suggested.
Resumo:
A review on the electrophilic addition of iodine to alkenes in the presence of oxygen containing nucleophiles (cohalogenation reaction) is presented. The intermolecular reactions are discussed with emphasis in methods of reaction and synthetic applications of the resulting vicinal iodo-functionalized products (iodohydrins, beta-iodoethers and beta-iodocarboxylates).
Resumo:
The field of protein crystallography inspires and enthrals, whether it be for the beauty and symmetry of a perfectly formed protein crystal, the unlocked secrets of a novel protein fold, or the precise atomic-level detail yielded from a protein-ligand complex. Since 1958, when the first protein structure was solved, there have been tremendous advances in all aspects of protein crystallography, from protein preparation and crystallisation through to diffraction data measurement and structure refinement. These advances have significantly reduced the time required to solve protein crystal structures, while at the same time substantially improving the quality and resolution of the resulting structures. Moreover, the technological developments have induced researchers to tackle ever more complex systems, including ribosomes and intact membrane-bound proteins, with a reasonable expectation of success. In this review, the steps involved in determining a protein crystal structure are described and the impact of recent methodological advances identified. Protein crystal structures have proved to be extraordinarily useful in medicinal chemistry research, particularly with respect to inhibitor design. The precise interaction between a drug and its receptor can be visualised at the molecular level using protein crystal structures, and this information then used to improve the complementarity and thus increase the potency and selectivity of an inhibitor. The use of protein crystal structures in receptor-based drug design is highlighted by (i) HIV protease, (ii) influenza virus neuraminidase and (iii) prostaglandin H-2-synthetase. These represent, respectively, examples of protein crystal structures that (i) influenced the design of drugs currently approved for use in the treatment of HIV infection, (ii) led to the design of compounds currently in clinical trials for the treatment of influenza infection and (iii) could enable the design of highly specific non-steroidal anti-inflammatory drugs that lack the common side-effects of this drug class.
Resumo:
Poly(vinylidene fluoride-co-chlorotrifluoroethylene) – P(VDF-CTFE) membranes are increasingly interesting for a wide range of applications, including battery separators, filtration membranes and biomedical applications. This work reports on the morphology, hydrophobicity, thermal and mechanical properties variation of P(VDF-CTFE) membranes processed by nonsolvent induced phase separation technique (NIPS) as a function of the main processing parameters. All membranes show a porous structure composed of large spherulites, (interconnected) micropores and/or microvoids depending on the processing conditions used that in turn affect their hydrophobicity and mechanical properties. The degree of crystallinity of the membranes remains approximately constant with a value of about 15 %, except for the membranes immediately immersed in ethanol, which is of about 23 %. In turn, the crystalline phases present in the copolymer is mainly affected by the temperature and nonsolvent characteristics of the coagulation bath, the β-phase content ranging from 33 to 100 %, depending on those processing parameters. It was show that the temperature of water-based coagulation bath plays an important role in order to produce structurally uniform and homogeneous porous membranes, which is particularly important from the point of view of technological applications.
Resumo:
One important component with particular relevance in battery performance is the cathode, being one of the main responsible elements for cell capacity and cycle life. Carbon coated lithium iron phosphate, C-LiFePO4, active material is one of the most promising cathode materials for the next generation of large scale lithium ion battery applications and strong research efforts are being devoted to it, due to its excellent characteristics, including high capacity, ~170 mAh/g, and safety. This review summarizes the main developments on C-LiFePO4 based cathode film preparation and performance. The effect of the binder, conductive additive, relationship between active material-binder-conductive additive and drying step, in the electrode film fabrication and performance is presented and discussed. Finally, after the presentation of the cell types fabricated with C-LiFePO4 active material and their performance, some conclusions and guidelines for further investigations are outlined.
Resumo:
Cardiovascular disease is the leading cause of death worldwide. Within this subset, coronary artery disease (CAD) is the most prevalent. Magnetic resonance angiography (MRA) is an emerging technique that provides a safe, non-invasive way of assessing CAD progression. To generate contrast between tissues, MR images are weighted according to the magnetic properties of those tissues. In cardiac MRI, T2 contrast, which is governed by the rate of transverse signal loss, is often created through the use of a T2-Preparation module. T2-Preparation, or T2-Prep, is a magnetization preparation scheme used to improve blood/myocardium contrast in cardiac MRI. T2-Prep methods generally use a non-selective +90°, 180°, 180°, -90° train of radiofrequency (RF) pulses (or variant thereof), to tip magnetization into the transverse plane, allow it to evolve, and then to restore it to the longitudinal plane. A key feature in this process is the combination of a +90° and -90° RF pulse. By changing either one of these, a mismatch occurs between signal excitation and restoration. This feature can be exploited to provide additional spectral or spatial selectivity. In this work, both of these possibilities are explored. The first - spectral selectivity - has been examined as a method of improving fat saturation in coronary MRA. The second - spatial selectivity - has been examined as a means of reducing imaging time by decreasing the field of view, and as a method of reducing artefacts originating from the tissues surrounding the heart. Two additional applications, parallel imaging and self-navigation, are also presented. This thesis is thus composed of four sections. The first, "A Fat Signal Suppression for Coronary MRA at 3T using a Water-Selective Adiabatic T2-Preparation Technique", was originally published in the journal Magnetic Resonance in Medicine (MRM) with co-authors Ruud B. van Heeswijk and Matthias Stuber. The second, "Combined T2-Preparation and 2D Pencil Beam Inner Volume Selection", again with co-authors Ruud van Heeswijk and Matthias Stuber, was also published in the journal MRM. The third, "A cylindrical, inner volume selecting 2D-T2-Prep improves GRAPPA-accelerated image quality in MRA of the right coronary artery", written with co-authors Jerome Yerly and Matthias Stuber, has been submitted to the "Journal of Cardiovascular Magnetic Resonance", and the fourth, "Combined respiratory self-navigation and 'pencil-beam' 2D-T2 -Prep for free-breathing, whole-heart coronary MRA", with co¬authors Jerome Chaptinel, Giulia Ginami, Gabriele Bonanno, Simone Coppo, Ruud van Heeswijk, Davide Piccini, and Matthias Stuber, is undergoing internal review prior to submission to the journal MRM. -- Les maladies cardiovasculaires sont la cause principale de décès dans le monde : parmi celles-ci, les maladies coronariennes sont les plus répandues. L'angiographie par résonance magnétique (ARM) est une technique émergente qui fournit une manière sûre, non invasive d'évaluer la progression de la coronaropathie. Pour obtenir un contraste entre les tissus, les images d'IRM sont pondérées en fonction des propriétés magnétiques de ces tissus. En IRM cardiaque, le contraste en T2, qui est lié à la décroissance du signal transversal, est souvent créé grâce à l'utilisàtion d'un module de préparation T2. La préparation T2, ou T2-Prep, est un système de préparation de l'aimantation qui est utilisé pour améliorer le contraste entre le sang et le myocarde lors d'une IRM cardiaque. Les méthodes de T2-Prep utilisent généralement une série non-sélective d'impulsions de radiofréquence (RF), typiquement [+ 90°, 180°, 180°, -90°] ou une variante, qui bascule l'aimantation dans le plan transversal, lui permet d'évoluer, puis la restaure dans le plan longitudinal. Un élément clé de ce processus est la combinaison des impulsions RF de +90° et -90°. En changeant l'une ou l'autre des impulsions, un décalage se produit entre l'excitation du signal et de la restauration. Cette fonction peut être exploitée pour fournir une sélectivité spectrale ou spatiale. Dans cette thèse, les deux possibilités sont explorées. La première - la sélectivité spectrale - a été examinée comme une méthode d'améliorer la saturation de la graisse dans l'IRM coronarienne. La deuxième - la sélectivité spatiale - a été étudiée comme un moyen de réduire le temps d'imagerie en diminuant le champ de vue, et comme une méthode de réduction des artefacts provenant des tissus entourant le coeur. Deux applications supplémentaires, l'imagerie parallèle et la self-navigation, sont également présentées. Cette thèse est ainsi composée de quatre sections. La première, "A Fat Signal Suppression for Coronary MRA at 3T using a Water-Selective Adiabatic T2-Preparation Technique", a été publiée dans la revue médicale Magnetic Resonance .in Medicine (MRM) avec les co-auteurs Ruud B. van Heeswijk et Matthias Stuber. La deuxième, Combined T2-Preparation and 2D Pencil Beam Inner Volume Selection", encore une fois avec les co-auteurs Ruud van Heeswijk et Matthias Stuber, a également été publiée dans le journal MRM. La troisième, "A cylindrical, inner volume selecting 2D-T2-Prep improves GRAPPA- accelerated image quality in MRA of the right coronary artery", écrite avec les co-auteurs Jérôme Yerly et Matthias Stuber, a été présentée au "Journal of Cardiovascular Magnetic Resonance", et la quatrième, "Combined respiratory self-navigation and 'pencil-beam' 2D-T2 -Prep for free-breathing, whole-heart coronary MRA", avec les co-auteurs Jérôme Chaptinel, Giulia Ginami, Gabriele Bonanno , Simone Coppo, Ruud van Heeswijk, Davide Piccini, et Matthias Stuber, subit un examen interne avant la soumission à la revue MRM.
Resumo:
Enantiopure intermediates are of high value in drug synthesis. Biocatalysis alone or combined with chemical synthesis provides powerful tools to access enantiopure compounds. In biocatalysis, chemo-, regio- and enantioselectivity of enzymes are combined with their inherent environmentally benign nature. Enzymes can be applied in versatile chemical reactions with non-natural substrates under synthesis conditions. Immobilization of an enzyme is a crucial part of an efficient biocatalytic synthesis method. Successful immobilization enhances the catalytic performance of an enzyme and enables its reuse in successive reactions. This thesis demonstrates the feasibility of biocatalysis in the preparation of enantiopure secondary alcohols and primary amines. Viability and synthetic usability of the studied biocatalytic methods have been addressed throughout this thesis. Candida antarctica lipase B (CAL-B) catalyzed enantioselective O-acylation of racemic secondary alcohols was successfully incorporated with in situ racemization in the dynamic kinetic resolution, affording the (R)-esters in high yields and enantiopurities. Side reactions causing decrease in yield and enantiopurity were suppressed. CAL-B was also utilized in the solvent-free kinetic resolution of racemic primary amines. This method produced the enantiomers as (R)-amides and (S)-amines under ambient conditions. An in-house sol-gel entrapment increased the reusability of CAL-B. Arthrobacter sp. omega-transaminase was entrapped in sol-gel matrices to obtain a reusable catalyst for the preparation enantiopure primary amines in an aqueous medium. The obtained heterogeneous omega-transaminase catalyst enabled the enantiomeric enrichment of the racemic amines to their (S)-enantiomers. The synthetic usability of the sol-gel catalyst was demonstrated in five successive preparative kinetic resolutions.
Resumo:
The thesis deals with the preparation and dielectric characterization of Poly aniline and its analogues in ISM band frequency of 2-4 GHz that includes part of the microwave region (300 MHz to 300 GHz) of the electromagnetic spectrum and an initial dielectric study in the high frequency [O.05MHz-13 MHz]. PolyaniIine has been synthesized by an in situ doping reaction under different temperature and in the presence of inorganic dopants such as HCl H2S04, HN03, HCl04 and organic dopants such as camphorsulphonic acid [CSA], toluenesulphonic acid {TSA) and naphthalenesulphonic acid [NSA]. The variation in dielectric properties with change in reaction temperature, dopants and frequency has been studied. The effect of codopants and microemulsions on the dielectric properties has also been studied in the ISM band. The ISM band of frequencies (2-4 GHz) is of great utility in Industrial, Scientific and Medical (ISM) applications. Microwave heating is a very efficient method of heating dielectric materials and is extensively used in industrial as well as household heating applications.