1000 resultados para polyol-mediated
Resumo:
Nonconsumptive or trait-mediated effects of predators on their prey often outweigh density-mediated interactions where predators consume prey. For instance, predator presence can alter prey behaviour, physiology, morphology and/or development. Despite a burgeoning literature, our ability to identify general patterns in prey behavioural responses may be influenced by the inconsistent methodologies of predator cue experiments used to assess trait-mediated effects. We therefore conducted a meta-analysis to highlight variables (e.g. water type, predator husbandry, exposure time) that may influence invertebrate prey's behavioural responses to fish predator cues. This revealed that changes in prey activity and refuge use were remarkably consistent overall, despite wide differences in experimental methodologies. Our meta-analysis shows that invertebrates altered their behaviour to predator cues of both fish that were fed the focal invertebrate and those that were fed other prey types, which suggests that invertebrates were not responding to specific diet information in the fish cues. Invertebrates also altered their behaviour regardless of predator cue addition regimes and fish satiation levels. Cue intensity and exposure time did not have significant effects on invertebrate behaviour. We also highlight that potentially confounding factors, such as parasitism, were rarely recorded in sufficient detail to assess the magnitude of their effects. By examining the likelihood of detecting trait-mediated effects under large variations in experimental design, our study demonstrates that trait-mediated effects are likely to have pervasive and powerful influences in nature.
Resumo:
A base mediated isomerisation-allylation protocol of 1,3- disubstituted propenols has been established. The use of diaryl and aryl-silyl substrates is reported alongside the use of substituted allyl bromides. Mechanistic experiments have also been conducted to elucidate the reaction pathway.
Resumo:
Two base-mediated cascade rearrangement reactions of diallyl ethers were developed leading to selective [2,3]-Wittig–oxy-Cope and isomerization–Claisen rearrangements. Both diaryl and arylsilyl-substituted 1,3-substituted propenyl substrates were examined, and each exhibits unique reactivity and different reaction pathways. Detailed mechanistic and computational analysis was conducted, which demonstrated that the role of the base and solvent was key to the reactivity and selectivity observed. Crossover experiments also suggest that these reactions proceed with a certain degree of dissociation, and the mechanistic pathway is highly complex with multiple competing routes.
Resumo:
This study was designed to determine if the histamine H3 receptor agonist R-alpha-methylhistamine would play a role in modulation of sympathetically evoked mydriasis in anesthetized rats, and if so, to ascertain the specific receptor subtype(s) involved. Reproducible frequency-response curves of pupillary dilation were generated by stimulation of the cervical preganglionic sympathetic nerve (1-32 Hz). Systemic administration of R-alpha-methylhistamine (0.3-3.0 mg kg(-1)) produced a dose-related inhibition of the evoked mydriasis. The greatest inhibition was seen at lower frequency levels, with about 43% depression observed at 2 Hz. The specific histamine H3 receptor antagonist, clobenpropit (3.0 mg kg(-1), i.v.), blocked the inhibitory effect of R-alpha-methylhistamine, whereas neither the histamine H2 receptor antagonist, cimetidine (5.0 mg kg(-1), i.v.), nor the histamine H1 receptor antagonist, chlorpheniramine (0.5 mg kg(-1), i.v.), was effective. The histamine H2 receptor agonist, dimaprit (10 mg kg(-1), i.v.), was also without effect on the evoked mydriasis. R-alpha-methylhistamine (3.0 mg kg(-1)) did not inhibit phenylephrine-induced mydriasis. These results support the conclusion that R-alpha-methylhistamine produces inhibition of sympathetically evoked mydriasis via histamine H3 receptor stimulation, presumably by an action on presynaptic histamine H3 receptors.
Resumo:
The factor-dependent cell line, TF-1, established from a patient with erythroleukaemia, shows characteristics of immature erythroblasts. Addition of granulocyte-macrophage colony stimulating factor (GM-CSF) to the culture medium is required for long-term growth of the cells. Erythropoietin (Epo) can also be used to sustain TF-1 cells but for only limited periods (approximately a week). Low levels of both growth factors can act synergistically to maintain proliferation for a longer period of time than Epo alone. To eliminate the requirement of exogenous Epo for growth, TF-1 cells were co-cultured with a retroviral secreting cell line containing the human erythropoietin (hEpo) gene and a neomycin (neo) selectable marker. TF-1 cells which exhibited neo resistance (indicating infection by the retrovirus) were then grown in low concentrations of GM-CSF without the addition of Epo. Under these conditions growth of normal TF-1 cells was not sustained. The neo-resistant cells survived for more than 14 days indicating synergy between GM-CSF and the Epo synthesised by the co-cultured TF-1 cells. Radioimmunoassays performed on growth media detected concentrations up to 1 mU/ml of Epo, implying that stable integration of the retroviral vector and expression of the hEpo gene have been achieved.
Resumo:
Objective: Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process.
Approach and Results: We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α–mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation.
Conclusions: Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α–mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.
Resumo:
Previous work has suggested that there are specific deficits in dorsal stream processing in a variety of developmental disorders. Prader-Willi syndrome (PWS) is associated with two main genetic subtypes, deletion and disomy. Relative strengths in visual processing are shown in PWS, although these strengths may be specific to the deletion subtype. We investigated visual processing in PWS using an adapted Simon task which contrasted location (dorsal stream) and shape identity (ventral stream) tasks. Compared to a group of typically developing children, children with PWS deletion showed a greater degree of impairment in the dorsal stream task than in the ventral stream task, a pattern similar to that shown in a group of boys with Fragile-X syndrome. When matched on a measure of non-verbal ability, children with PWS disomy showed the opposite pattern with better performance in the location compared to the shape task, although these task performance asymmetries may have been linked to executive control processes. It is proposed that children with PWS deletion show a relative strength in visual processing in the ventral stream along with a specific deficit in dorsal stream processing. In contrast, children with PWS disomy show neither effect. (C) 2009 Published by Elsevier Ltd.
Resumo:
Bias dependent mechanisms of irreversible cathodic and anodic processes on a pure CeO2 film are studied using modified atomic force microscopy (AFM). For a moderate positive bias applied to the AFM tip an irreversible electrochemical reduction reaction is found, associated with significant local volume expansion. By changing the experimental conditions we are able to deduce the possible role of water in this process. Simultaneous detection of tip height and current allows the onset of conductivity and the electrochemical charge transfer process to be separated, further elucidating the reaction mechanism. The standard anodic/cathodic behavior is recovered in the high bias regime, where a sizable transport current flows between the tip and the film. These studies give insight into the mechanisms of the tip-induced electrochemical reactions as mediated by electronic currents, and into the role of water in these processes, as well as providing a different approach for electrochemical nano-writing.
Resumo:
Background: The emerging field of microneedle-based minimally invasive patient monitoring and diagnosis is reviewed. Microneedle arrays consist of rows of micron-scale projections attached to a solid support. They have been widely investigated for transdermal drug and vaccine delivery applications since the late 1990s. However, researchers and clinicians have recently realized the great potential of microneedles for extraction of skin interstitial fluid and, less commonly, blood, for enhanced monitoring of patient health.
Methods: We reviewed the journal and patent literature, and summarized the findings and provided technical insights and critical analysis.
Results: We describe the basic concepts in detail and extensively review the work performed to date.
Conclusions: It is our view that microneedles will have an important role to play in clinical management of patients and will ultimately improve therapeutic outcomes for people worldwide.
Resumo:
The collision of two plasma clouds at a speed that exceeds the ion acoustic speed can result in the formation of shocks. This phenomenon is observed not only in astrophysical scenarios, such as the propagation of supernova remnant (SNR) blast shells into the interstellar medium, but also in laboratory-based laser-plasma experiments. These experiments and supporting simulations are thus seen as an attractive platform for small-scale reproduction and study of astrophysical shocks in the laboratory. We model two plasma clouds, which consist of electrons and ions, with a 2D particle-in-cell simulation. The ion temperatures of both clouds differ by a factor of ten. Both clouds collide at a speed that is realistic for laboratory studies and for SNR shocks in their late evolution phase, like that of RCW86. A magnetic field, which is orthogonal to the simulation plane, has a strength that is comparable to that of SNR shocks. A forward shock forms between the overlap layer of both plasma clouds and the cloud with cooler ions. A large-amplitude ion acoustic wave is observed between the overlap layer and the cloud with hotter ions. It does not steepen into a reverse shock because its speed is below the ion acoustic speed. A gradient of the magnetic field amplitude builds up close to the forward shock as it compresses the magnetic field. This gradient gives rise to an electron drift that is fast enough to trigger an instability. Electrostatic ion acoustic wave turbulence develops ahead of the shock, widens its transition layer, and thermalizes the ions, but the forward shock remains intact. © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24 h. However, their uptake was ~ 38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251 but showed little/no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. Cell death in U251 was necrotic, probably due to oxidative degradation of APE-1.
Graphical abstract
We used O-GNR-PEG-DSPE as a reliable, non-toxic vehicle for delivery of APE-1 inhibiting Lucanthone into GBM tumor cell lines. LUC-O-GNR-PEG-DSPE particles showed 60% or more uptake by CMV/U251 and A1-5/CMV/U251 where as the uptake by MCF7 and normal CG4 glial cells was much lower (38% and 29% respectively). Different concentrations of Luc (5–80 μM) loaded onto O-GNR-PEG-DSPE showed lower toxicity in the exposed cells compared to the free drug, due to possible slow release of the drug from this particle, which ensures minimum non-specific release of the drug from the particle once it is injected in vivo.
http://ars.els-cdn.com/content/image/1-s2.0-S1549963414004249-fx1.jpg
Resumo:
Previously we have shown that expression of the deubiquitinating enzyme USP17 is required for cell proliferation and motility. More recently we reported that USP17 deubiquitinates RCE1 isoform 2 and thus regulates the processing of 'CaaX' motif proteins. Here we now show that USP17 expression is induced by epidermal growth factor and that USP17 expression is required for clathrin mediated endocytosis of epidermal growth factor receptor. In addition, we show that USP17 is required for the endocytosis of transferrin, an archetypal substrate for clathrin mediated endocytosis, and that USP17 depletion impedes plasma membrane recruitment of the machinery required for clathrin mediated endocytosis. Thus, our data reveal that USP17 is necessary for epidermal growth factor receptor and transferrin endocytosis via clathrin coated pits, indicate this is mediated via the regulation of the recruitment of the components of the endocytosis machinery and suggest USP17 may play a general role in receptor endocytosis.
Resumo:
Thin, oxidised Al films grown an one face of fused silica prisms are exposed. tinder ambient conditions, to single shots from an excimer laser operating at wavelength 248 nm. Preliminary characterisation of the films using attenuated total reflection yields optical and thickness data for the Al and Al oxide layers; this step facilitates the subsequent, accurate tuning of the excimer laser pulse to the: surface plasmon resonance at the Al/(oxide)/air interface and the calculation of the fluence actually absorbed by the thin film system. Ablation damage is characterised using scanning electron, and atomic force microscopy. When the laser pulse is incident, through the prism on the sample at less than critical angle, the damage features are molten in nature with small islands of sub-micrometer dimension much in evidence, a mechanism of film melt-through and subsegment blow-off due to the build up of vapour pressure at the substrate/film interface is appropriate. By contrast, when the optical input is surface plasmon mediated, predominately mechanical damage results with the film fragmenting into large flakes of dimensions on the order of 10 mu m. It is suggested that the ability of surface plasmons to transport energy leads to enhanced, preferential absorption of energy at defect sites causing stress throughout the film which exceeds the ultimate tensile stress for the film: this in turn leads to film break-up before melting can onset. (C) 1998 Elsevier Science B.V.