983 resultados para polynuclear aromatic hydrocrabons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Croton zehntneri is an aromatic plant native to Northeastern Brazil, where it is often used in folk medicine. In the present study the antinociceptive effects of the essential oil of Croton zehntneri (EOCz) were evaluated in mice. EOCz administered orally at doses of 100 and 300 mg/kg reduced paw licking time in the second phase of the formalin test from the control value of 41.61 ± 8.62 to 12.01 ± 7.97 and 6.57 ± 3.42 s, respectively. During the first phase of the formalin test only 300 mg/kg induced a significant alteration (from 58.2 ± 7.02, control, to 28.7 ± 4.73 s). The number of contortions in response to intraperitoneal injections of acetic acid did not differ significantly between controls (80.6 ± 9.01) and experimental (300 mg/kg body weight) animals (89.1 ± 9.53% of the control numbers; P > or = 0.05, Student t-test). In the hot-plate test, EOCz at doses > or = 100 mg/kg significantly increased the latency time with respect to controls (11.2 ± 0.80). At 100 and 300 mg/kg this increase persisted for 180 and 240 min, respectively. The data show that EOCz is effective as an antinociceptive agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Croton nepetaefolius Baill., is an aromatic plant native to the northeast of Brazil where it is extensively used in folk medicine as a sedative, orexigen and antispasmodic agent. In the present study the antinociceptive effects of the essential oil of C. nepetaefolius (EOCn), administered orally, were evaluated in male Swiss mice (20-25 g). In the acetic acid-induced writhing test, EOCn (100 and 300 mg/kg; N = 14 and N = 12, respectively) was effective at the highest dose. In the hot-plate test, EOCn at 30 and 300 mg/kg, but not at 3 mg/kg, significantly increased the latency at all observation times up to the 180th min (N = 12 for each dose). In the formalin test, EOCn significantly reduced paw licking in the second phase of the test at 100 mg/kg (N = 12), but decreased it in both phases at 300 mg/kg (N = 12). At 30 mg/kg, the effect of EOCn did not differ from control values in either phase of the formalin test (N = 6). Pretreatment with naloxone (5 mg/kg, ip) significantly reversed the analgesic effect of morphine (5 mg/kg, sc) on both phases, but not that of EOCn at 300 mg/kg (N = 6) on both phases of the formalin test. The data show that orally administered EOCn promotes a dose-dependent antinociceptive effect whose mechanisms remain to be elucidated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several natural compounds have been identified for the treatment of leishmaniasis. Among them are some alkaloids, chalcones, lactones, tetralones, and saponins. The new compound reported here, 7-geranyloxycoumarin, called aurapten, belongs to the chemical class of the coumarins and has a molecular weight of 298.37. The compund was extracted from the Rutaceae species Esenbeckia febrifuga and was purified from a hexane extract starting from 407.7 g of dried leaves and followed by four silica gel chromatographic fractionation steps using different solvents as the mobile phase. The resulting compound (47 mg) of shows significant growth inhibition with an LD50 of 30 µM against the tropical parasite Leishmania major, which causes severe clinical manifestations in humans and is endemic in the tropical and subtropical regions. In the present study, we investigated the atomic structure of aurapten in order to determine the existence of common structural motifs that might be related to other coumarins and potentially to other identified inhibitors of Leishmania growth and viability. This compound has a comparable inhibitory activity of other isolated molecules. The aurapten is a planar molecule constituted of an aromatic system with electron delocalization. A hydrophobic side chain consisting of ten carbon atoms with two double bonds and negative density has been identified and may be relevant for further compound synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Baltic Sea is unique by its biological, geochemical and physical features. The number of species of larger organisms is small and the species composition is distinctive. On the contrary microbial communities are diverse. Because of the low salinity levels, bacterial communities differ from the ones in the oceans. Knowing the structure of these communities better and how they response to different environmental conditions helps us to estimate how different factors affect the balance and function of the Baltic Sea ecosystem. Bacteria are the key players when it comes to natural biogeochemical processes and human-induced phenomena like eutrophication, oil spills or disposal of other harmful substances to the sea ecosystem. In this thesis, bacterial community structure in the sea surface microlayer and subsurface water of the Archipelago Sea were compared. In addition, the effect of diatom derived polyunsaturated aldehydes on bacterial community structure was studied by a mesocosm experiment. Diesel, crude oil and polycyclic aromatic hydrocarbon degradation capacity of the Baltic Sea bacteria was studied in smaller scale microcosm experiments. In diesel oil experiments bacteria from water phase of the Archipelago Sea was studied. Sediment and iron manganese concretions collected from the Gulf of Finland were used in the crude oil and polycyclic aromatic hydrocarbon experiments. The amount of polycyclic aromatic hydrocarbon degradation genes was measured in all of the oil degradation experiments. The results show how differences in bacterial community structure can be seen in the sea surface when compared to the subsurface waters. The mesocosm experiment demonstrated how diatom-bacteria interactions depend on other factors than diatom derived polyunsaturated aldehydes, which do not seem to have an effect on the bacterial community structure as has been suggested in earlier studies. The dominant bacterial groups in the diesel microcosms differed in samples taken from a pristine site when compared to a site with previous oil exposure in the Archipelago Sea area. Results of the study with sediment and iron-manganese concretions indicate that there are diverse bacterial communities, typical to each bottom type, inhabiting the bottoms of the Gulf of Finland capable to degrade oil and polycyclic aromatic hydrocarbon compounds.  

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CYP1A1 and GSTP1 polymorphisms have been associated with a higher risk to develop several cancers, including oral squamous cell carcinoma (OSCC), which is closely related to tobacco and alcohol consumption. Both genes code for enzymes that have an important role in activating or detoxifying carcinogenic elements found in tobacco and other compounds, and polymorphic variants of these genes may result in alterations of the enzymatic activity. The CYP1A1 gene codes for the enzyme aryl hydrocarbon hydroxylase, which is responsible for the metabolism of polycyclic aromatic hydrocarbons. The investigated polymorphism, Ile/Val, seems to increase the activity of the enzyme in homozygous individuals, leading to an accumulation of carcinogens. The Ile/Val polymorphism occurs because of an A->G transition at exon 7, resulting in the CYP1A1*2B allele. The GSTP1*B variant shows an A->G transition at exon 5, changing the amino acid Ile to Val, with a reduced catalytic activity of the enzyme. Due to this reduction, the carriers of mutant alleles lost the capability to metabolize carcinogens, which could be responsible for a higher susceptibility to cancer. We conducted a case-control study in a group of 72 cases with newly diagnosed OSCC and 60 healthy controls matched for age, gender, smoking habits, and ethnicity. We used PCR methods to identify the allelic variants CYP1A1*2B and GSTP1*B. The data obtained showed no statistically significant association of allelic or genotypic variants of CYP1A1*2B (OR = 1.06; 95% CI = 0.49-2.29) and GSTP1*B (OR = 1.40; 95% CI = 0.70-2.79) with OSCC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mentha x villosa Huds (Labiatae) is an aromatic herb widely used in folk medicine. Since the essential oil of the herb has many pharmacological activities, including antispasmodic effects, we determined whether the oil and its major constituent, piperitenone oxide (PO), have antinociceptive activity. The essential oil of M. x villosa (EOMV) and PO administered orally at 200 mg/kg (vehicle: 0.1% Tween 80 in water) significantly reduced the writhings induced by acetic acid from control values of 59.5 ± 3.1 s (N = 10) to 31.9 ± 2.8 s (N = 10) and 23.8 ± 3.4 s (N = 10), respectively. When administered at 100 and 200 mg/kg, EOMV reduced the paw licking time for the second phase of the formalin test from the control value of 20.6 ± 2.1 s (N = 13) to 5.3 ± 2.2 s (N = 12) and 2.7 ± 1.2 s (N = 18), respectively. At 100 and 200 mg/kg, PO reduced this second phase to 8.3 ± 2.7 s (N = 12) and 3.0 ± 1.2 s (N = 10), respectively. This effect of EOMV and PO was not reversed by naloxone. EOMV and PO had no significant effect on the first phase of the formalin test. As evaluated by the hot-plate and tail immersion test, EOMV and PO, at doses up to 200 mg/kg, showed no analgesic activity. These results show that EOMV and PO have antinociceptive activity and suggest that this effect is probably an indirect anti-inflammatory effect, which does not involve the central nervous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polychlorinated dibenzo-p-dioxins (PCDDs) and related halogenated aromatic hydrocarbons (e.g., PCDFs), often called "dioxins", are ubiquitously present environmental contaminants. Some of them, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are among the most toxic synthetic compounds known. The biological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR). Mutations in the AhR transactivation domain are linked to sensitivity to the acute lethality of TCDD. We present here a study of AhR gene polymorphism in normal and cancer human tissues affecting pre-mRNA splicing in the AhR gene-coding transactivation domain region (exon 10, intron 10, exon 11 region), previously shown to be associated with AhR dysfunction. We tested 126 pairs of normal and cancer tissue samples from liver, lung, stomach, kidney, mucous, breast, and pancreas of 49 males and 77 females (45-70 years of age). We used in vitro splicing assay, RT-PCR and sequencing methods. Our results showed that in an in vitro system it is possible to reconstitute cellular pre-mRNA splicing events. Tested cancer tissues did not contain mutations in the AhR transactivation domain region when the DNA sequences were compared with those from normal tissues. There were also no differences in AhR mRNA splice variants between normal and malignant breast tissues and no polymorphisms in the studied regions or cDNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carotenoids are important constituents of food due to their color and because their degradation products generate important volatile compounds in foods. Aroma compounds derived from carotenoids are widely distributed in nature, and they are precursors of many important aromas in foods such as fruits and in flowers as well. They present high aromatic potential and are therefore of great interest to the industries of aromas and fragrances. In this study, more than 300 previously isolated microorganisms with potential for biotransformation of β-carotene present in the culture medium were selected using the plate method; about 80 strains presented capacity to produce aroma compounds and 7 strains were selected by an untrained panel of tasters to generate aroma compounds. The β-ionone was the main compound produced by CS1 (34.0 mg.L-1) and CF9 (42.4 mg.L-1) microorganisms at 72 and 24 hours of fermentation, cultured with and without pre-inoculation, respectively. The β-damascone and pseudoionone were found in low concentrations, 1,1,6-trimethyl-1,2,3,4-tetrahydronaphthalen (TTN) was tentatively identified and other compounds such as apocarotenoids, apparently obtained from the cleavage of the central part of the carotenoid, were detected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many industrialized countries, including Brazil, sodium intake exceeds the nutritional recommendations. Excessive consumption is associated with hypertension and premature death by cardiovascular diseases. The industry's challenge is to produce products with reduced sodium that are similar to regular products in texture and flavor and consistent with consumers' dietary habits. The present study aimed at substituting 25 and 50% NaCl for KCl in marinated beef and chicken meat with the addition of aromatic herbs and spices. The following microbiological analyses were carried out: macronutrient, chemical composition, and sensorial analysis. The meats showed a reduction in NaCl contents without any changes in their physical and chemical characteristics, and the products´ quality and microbiological safety were maintained. Beef and chicken tenderness was maintained for both treatments. Furthermore, the use of 50% KCl did not cause any changes in the products' sensory quality, and the overall acceptance of both types of meat was maintained. Results showed that a reduction by 50% in the NaCl contents of marinated meat products with a combination of herbs and spices is possible. Future applications in other meat products and sausages are highly promising.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to compare the sensory quality and the volatile compound profile of new varieties of Capsicum chinense pepper (CNPH 4080 a strain of'Cumari-do-Pará' and BRS Seriema) with a known commercial variety (Biquinho). Volatiles were isolated from the headspace of fresh fruit by SPME and identified by GC-MS. Pickled peppers were produced for sensory evaluation. Aroma descriptors were evaluated by Check-All-That-Apply (CATA) method, and the frequency data were submitted to Correspondence Analysis. Flavor acceptance was assessed by hedonic scale and analyzed by ANOVA. BRS Seriema showed the richest volatile profile, with 55 identified compounds, and up to 40% were compounds with sweet aroma notes. CNPH 4080 showed similar volatile profile to that of Biquinho pepper, but it had higher amounts of pepper-like and green-note compounds. The samples did not differ in terms of flavor acceptance, but they showed differences in aroma quality confirming the differences found in the volatile profiles. The C. chinense varieties developed by Embrapa proved to be more aromatic than Biquinho variety, and were well accepted by the judges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Milk is an important source of bioactive compounds. Many of these compounds are released during fermentation and refrigerated storage. The aim of this study was to determine the release of peptides by lactic acid bacteria in commercial fermented milk during refrigerated storage. The size and profile of peptides were analyzed by polyacrylamide gel electrophoresis and sizeexclusion HPLC. During electrophoresis, it was observed that the peptides were released from caseins, whereas β-lactoglobulin was the whey protein with the highest degradation. HPLC analysis confirmed the pattern of peptide formation observed in electrophoresis. Two fractions lower than 2 kDa with aromatic amino acids in their structure were separated. These results were consistent with those reported for structures of peptides with antihypertensive activity. Therefore, the presence of aromatic amino acids in the peptide fractions obtained increases the likelihood of finding peptides with such activity in refrigerated commercial fermented milk. In conclusion, during cold storage, peptides with different molecular weights are released and accumulated. This could be due to the action of proteinases and peptidases of the proteolytic system in lactic acid bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aroma characteristics of wines from four Vitis vinifera grape varieties (‘Cabernet sauvignon’, ‘Merlot’, ‘Chardonnay’, and ‘Italian Riesling’) grown in three shoot positions were evaluated by HS-SPME-GC/MS. In this study, the numerous significant differences found in most of the aromatic compounds influence of different shoot positions on the quality of wine. The results showed that the middle shoot position increased significantly the aroma concentration in the majority of wines investigated. The volatile components showing the greatest differences in the wines of different cultivars were aldehydes and terpenes. 8 and 11 compounds were found and quantified (OAVs>1) in the two red wines and white wines at concentrations higher than their corresponding odor thresholds, respectively; and therefore they significantly contributed to the wine aromas. According to their OAVs, fruity, floral, cheese and fatty aroma strongly influenced the characteristics of the four monovarietal wines, while the two white wines showed the green and fresh aroma characteristics. These results are related to the different microclimate of the canopies of the different shoot positions and varieties. They suggest that proper elevating the fruiting zones could improve the accumulation of aroma compounds in wines from the different varieties. On the other hand, grapevines trained to systems with uniform fruiting zones could improve the quality of wine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphoserine aminotrasferase (PSAT: EC 2.6.1.52) is a vitamin B6-dependent enzyme and a member of the subgroup IV in the aminotransferase superfamily. Here, X-ray crystallography was used to determine the structure of PSAT from Bacillus alcalophilus with pyridoxamine 5′-phosphate (PMP) at high resolution (1.57 Å). In addition, analysis of active residues and their conformational changes was performed. The structure is of good quality as indicated, for example, by the last recorded Rwork and Rfree numbers (0.1331 and 0.1495, respectively). The enzyme was initially crystallized in the presence of substrate L-glutamate with the idea to produce the enzyme-substrate complex. However, the structure determination revealed no glutamate bound at the active site. Instead, the Schiff base between Lys196 and PLP appeared broken, resulting in the formation of PMP owing to the excess of the donor substrate used during co-crystallization. Structural comparison with the free PSAT enzyme and the PSAR-PSER complex showed that the aromatic ring of the co-factor remains in almost the same place in all structures. A flexible nearby loop in the active site was found in the same position as in the free PSAT structure while in the PSAT-PSER structure it moves inwards to interact with PSER. B-factors comparison in all three structures (PSAT-PMP complex, free PSAT, and PSAT-PSER complex) showed elevated loop flexibility in the absence of the substrate, indicating that loop flexibility plays an important role during substrate binding. The reported structure provides mechanistic details into the reaction mechanism of PSAT and may help in understanding better the role of various parts in the structure towards the design of novel compounds as potential disruptors of PSAT function. This may lead to the development of new drugs which could target the human and bacterial PSAT active site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular oxygen (O2) is a key component in cellular respiration and aerobic life. Through the redox potential of O2, the amount of free energy available to organisms that utilize it is greatly increased. Yet, due to the nature of the O2 electron configuration, it is non-reactive to most organic molecules in the ground state. For O2 to react with most organic compounds it must be activated. By activating O2, oxygenases can catalyze reactions involving oxygen incorporation into organic compounds. The oxygen activation mechanisms employed by many oxygenases to have been studied, and they often include transition metals and selected organic compounds. Despite the diversity of mechanisms for O2 activation explored in this thesis, all of the monooxygenases studied in the experimental part activate O2 through a transient carbanion intermediate. One of these enzymes is the small cofactorless monooxygenase SnoaB. Cofactorless monooxygenases are unusual oxygenases that require neither transition metals nor cofactors to activate oxygen. Based on our biochemical characterization and the crystal structure of this enzyme, the mechanism most likely employed by SnoaB relies on a carbanion intermediate to activate oxygen, which is consistent with the proposed substrate-assisted mechanism for this family of enzymes. From the studies conducted on the two-component system AlnT and AlnH, both the functions of the NADH-dependent flavin reductase, AlnH, and the reduced flavin dependent monooxygenase, AlnT, were confirmed. The unusual regiochemistry proposed for AlnT was also confirmed on the basis of the structure of a reaction product. The mechanism of AlnT, as with other flavin-dependent monooxygenases, is likely to involve a caged radical pair consisting of a superoxide anion and a neutral flavin radical formed from an initial carbanion intermediate. In the studies concerning the engineering of the S-adenosyl-L-methionine (SAM) dependent 4-O-methylase DnrK and the homologous atypical 10-hydroxylase RdmB, our data suggest that an initial decarboxylation of the substrate is catalyzed by both of these enzymes, which results in the generation of a carbanion intermediate. This intermediate is not essential for the 4-O-methylation reaction, but it is important for the 10-hydroxylation reaction, since it enables substrate-assisted activation of molecular oxygen involving a single electron transfer to O2 from a carbanion intermediate. The only role for SAM in the hydroxylation reaction is likely to be stabilization of the carbanion through the positive charge of the cofactor. Based on the DnrK variant crystal structure and the characterizations of several DnrK variants, the insertion of a single amino acid in DnrK (S297) is sufficient for gaining a hydroxylation function, which is likely caused by carbanion stabilization through active site solvent restriction. Despite large differences in the three-dimensional structures of the oxygenases and the potential for multiple oxygen activation mechanisms, all the enzymes in my studies rely on carbanion intermediates to activate oxygen from either flavins or their substrates. This thesis provides interesting examples of divergent evolution and the prevalence of carbanion intermediates within polyketide biosynthesis. This mechanism appears to be recurrent in aromatic polyketide biosynthesis and may reflect the acidic nature of these compounds, propensity towards hydrogen bonding and their ability to delocalize π-electrons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of synthetically useful ring systems can be prepared via the intramolecular insertion of a metal-stabilized carbenoid into a heteroaromatic systems. The chemical outcome of these reactions are dependent not only on the nature of the heteroatom but also on the length of the aliphatic tether linking the carbenoid moiety with the aromatic fragment. Our work with furanyl and thienyl systems containing a single methylene tether have allowed for some rather atypical chemistry. For example, treatment of l-diazo-3-(2-thienyl)-2-propanone (6) with catalytic rhodium (II) acetate yields 5,6- dihydro-4^-cyclopenta[Z>]thiophen-5-one (3) while, the isomeric l-diazo-3-(3-thienyl)-2- propanone(15) gives a spiro-disulphide (20). Novel chemistry was also exhibited in the analogous furanyl systems. While treatment of l-diazo-3-(3-furanyl)-2-propanone (52) with Rh2(OAc)4 resulted in the expected 2-(4-Oxo-2-cyclopentenyliden)acetaldehyde (54), isomeric l-diazo-3-(2- furanyl)-2-propanone (8) undergoes vinylogous Wolff rearrangement to give a mixture of 6a-methyl-2,3,3a,6a-tetrahydrofuro[2,i-^>]furan-2-one (44) and 2-(2-methyl-3-furyl)acetic acid (43). Rhodium acetate catalyzed decomposition of l-diazo-3-(3-benzofuranyl)-2- propanone (84) and l-diazo-3-(2-benzofuranyl)-2-propanone (69)also allows for vinylogous Wolff rearrangement, a chemistry unseen in benzofuranyl systems with longer tethers. A number of interesting products were isolated from the trapping of intermediate ketenes. Decomposition of l-diazo-3-(3-benzothienyl)-2-propanone (100) resulted in the formation of 2,3-dihydro-l//-benzo[^]cyclopenta[^thiophen-2-one (102). However, in addition to (102), a dimer was also generated from the decomposition of l-diazo-3-(2- benzothienyl)-2-propanone (109). The insight into the mechanistic underpinnings of the above reactions are provided by molecular modeling at a PM3 level.